Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130268
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHelbig, S.en
dc.contributor.authorAbert, C.en
dc.contributor.authorSánchez, P. A.en
dc.contributor.authorKantorovich, S. S.en
dc.contributor.authorSuess, D.en
dc.date.accessioned2024-04-05T16:17:22Z-
dc.date.available2024-04-05T16:17:22Z-
dc.date.issued2023-
dc.identifier.citationHelbig, S, Abert, C, Sánchez, PA, Kantorovich, SS & Suess, D 2023, 'Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle', Physical Review B, Том. 107, № 5, 054416. https://doi.org/10.1103/PhysRevB.107.054416harvard_pure
dc.identifier.citationHelbig, S., Abert, C., Sánchez, P. A., Kantorovich, S. S., & Suess, D. (2023). Self-consistent solution of magnetic and friction energy losses of a magnetic nanoparticle. Physical Review B, 107(5), [054416]. https://doi.org/10.1103/PhysRevB.107.054416apa_pure
dc.identifier.issn2469-9950-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Hybrid Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85149791779&doi=10.1103%2fPhysRevB.107.054416&partnerID=40&md5=74ce98d5b7c1c2fcff2b34c227d96d771
dc.identifier.otherhttp://link.aps.org/pdf/10.1103/PhysRevB.107.054416pdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130268-
dc.description.abstractWe present a simple simulation model for analyzing magnetic and frictional losses of magnetic nanoparticles in viscous fluids subject to alternating magnetic fields. Assuming a particle size below the single-domain limit, we use a macrospin approach and solve the Landau-Lifshitz-Gilbert equation coupled to the mechanical torque equation. Despite its simplicity the presented model exhibits surprisingly rich physics and enables a detailed analysis of the different loss processes depending on field parameters and initial arrangement of the particle and the field. Depending on those parameters regions of different steady states emerge: a region with dominating magnetic relaxation and high magnetic losses and another region region with high frictional losses at low fields or low frequencies. The energy increases continuously even across regime boundaries up to frequencies above the viscous relaxation limit. At those higher frequencies the steady state can also depend on the initial orientation of the particle in the external field. The general behavior and special cases and their specific absorption rates are compared and discussed. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.en
dc.description.sponsorshipAustrian Science Fund, FWF: 33748; Russian Science Foundation, RSF; European Regional Development Fund, ERDF; Universitat de les Illes Balears, UIBen
dc.description.sponsorshipThe authors wish to thank the “FWF - Der Wissenschaftsfonds” for funding under the Project No. P 33748 and the Vienna Scientific Cluster (VSC) for providing the necessary computational resources. We acknowledge financial support by the Vienna Doctoral School in Physics (VDSP). P.A.S. acknowledges support from the project “Computer modeling of magnetic nanosorbents”, funded by the University of the Balearic Islands and the European Regional Development Fund. This research has been partially performed in the framework of the RSF Project No.19-12-00209.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-12-00209en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourcePhysical Review B2
dc.sourcePhysical Review Ben
dc.subjectENERGY DISSIPATIONen
dc.subjectFRICTIONen
dc.subjectNANOMAGNETICSen
dc.subjectPARTICLE SIZE ANALYSISen
dc.subjectA-PARTICLESen
dc.subjectALTERNATING MAGNETIC FIELDen
dc.subjectFRICTION ENERGYen
dc.subjectFRICTIONAL LOSSen
dc.subjectMAGNETIC ENERGIESen
dc.subjectSELF-CONSISTENT SOLUTIONen
dc.subjectSIMPLE++en
dc.subjectSIMULATION MODELen
dc.subjectSTEADY STATEen
dc.subjectVISCOUS FLUIDSen
dc.subjectPARTICLE SIZEen
dc.titleSelf-consistent solution of magnetic and friction energy losses of a magnetic nanoparticleen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1103/PhysRevB.107.054416-
dc.identifier.scopus85149791779-
local.contributor.employeeHelbig, S., Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria, Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austriaen
local.contributor.employeeAbert, C., Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria, Research Platform MMM Mathematics-Magnetism-Materials, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austriaen
local.contributor.employeeSánchez, P.A., Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria, Research Platform MMM Mathematics-Magnetism-Materials, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austria, Physics Department, University of the Balearic Islands, Palma de Mallorca, 07122, Spainen
local.contributor.employeeKantorovich, S.S., Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria, Research Platform MMM Mathematics-Magnetism-Materials, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austria, Institute of Mathematics and Natural Sciences, Ural Federal University, Lenin av. 51, Ekaterinburg, 620000, Russian Federationen
local.contributor.employeeSuess, D., Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria, Research Platform MMM Mathematics-Magnetism-Materials, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austriaen
local.issue5-
local.volume107-
dc.identifier.wos000943089300004-
local.contributor.departmentFaculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austriaen
local.contributor.departmentVienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austriaen
local.contributor.departmentResearch Platform MMM Mathematics-Magnetism-Materials, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, 1090, Austriaen
local.contributor.departmentPhysics Department, University of the Balearic Islands, Palma de Mallorca, 07122, Spainen
local.contributor.departmentInstitute of Mathematics and Natural Sciences, Ural Federal University, Lenin av. 51, Ekaterinburg, 620000, Russian Federationen
local.identifier.pure36032376-
local.description.order054416-
local.identifier.eid2-s2.0-85149791779-
local.fund.rsf19-12-00209-
local.identifier.wosWOS:000943089300004-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85149791779.pdf2,46 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons