Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130208
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Zhdanov, A. E. | en |
dc.contributor.author | Dolganov, A. Yu. | en |
dc.contributor.author | Zanca, D. | en |
dc.contributor.author | Borisov, V. I. | en |
dc.contributor.author | Luchian, E. | en |
dc.contributor.author | Dorosinsky, L. G. | en |
dc.date.accessioned | 2024-04-05T16:15:47Z | - |
dc.date.available | 2024-04-05T16:15:47Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Жданов, АЕ, Долганов, АЮ, Занка, Д, Борисов, ВИ, Лучиан, Е & Доросинский, ЛГ 2023, 'Оценка эффективности алгоритма поддержки принятия решения врачом при дистрофии сетчатки с использованием методов машинного обучения', Computer Optics, Том. 42, № 2, стр. 272-277. https://doi.org/10.18287/2412-6179-CO-1124 | harvard_pure |
dc.identifier.citation | Жданов, А. Е., Долганов, А. Ю., Занка, Д., Борисов, В. И., Лучиан, Е., & Доросинский, Л. Г. (2023). Оценка эффективности алгоритма поддержки принятия решения врачом при дистрофии сетчатки с использованием методов машинного обучения. Computer Optics, 42(2), 272-277. https://doi.org/10.18287/2412-6179-CO-1124 | apa_pure |
dc.identifier.issn | 0134-2452 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Gold, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148454222&doi=10.18287%2f2412-6179-CO-1124&partnerID=40&md5=7ae075f3e730511e35571714e69e3166 | 1 |
dc.identifier.other | https://computeroptics.ru/KO/PDF/KO47-2/470210.pdf | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/130208 | - |
dc.description.abstract | Electroretinography is a method of electrophysiological testing, which allows diagnosing dis-eases associated with disorders of the vascular structures of the retina. The classical analysis of the electroretinogram is based on assessing four parameters of the amplitude-time representation and often needs to be specified further using alternative diagnostic methods. This study proposes the use of an original physician decision support algorithm for diagnosing retinal dystrophy. The proposed algorithm is based on machine learning methods and uses parameters extracted from the wavelet scalogram of pediatric and adult electroretinogram signals. The study also uses a labeled database of pediatric and adult electroretinogram signals recorded using a computerized electrophysiological workstation EP-1000 (Tomey GmbH) at the IRTC Eye Microsurgery Ekaterinburg Center. The scientific novelty of this study consists in the development of special mathematical and algorithmic software for analyzing a procedure for extracting wavelet scalogram parameters of the electroretinogram signal using the cwt function of the PyWT. The basis function is a Gaussian wavelet of order 8. Also, the scientific novelty includes the development of an algorithm for analyzing electroretinogram signals that implements the classification of adult (pediatric) electro-retinogram signals 19 (20) percent more accurately than classical analysis. © 2023, Institution of Russian Academy of Sciences. All rights reserved. | en |
dc.description.sponsorship | Ministry of Education and Science of the Russian Federation, Minobrnauka | en |
dc.description.sponsorship | Acknowledgements: The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Institution of Russian Academy of Sciences | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.rights | cc-by | other |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | unpaywall |
dc.source | Computer Optics | 2 |
dc.source | Computer Optics | en |
dc.subject | DECISION SUPPORT ALGORITHM | en |
dc.subject | DECISION TREES | en |
dc.subject | ELECTROPHYSIOLOGICAL STUDY | en |
dc.subject | ELECTRORETINOGRAM | en |
dc.subject | ELECTRORETINOGRAPHY | en |
dc.subject | EPS | en |
dc.subject | ERG | en |
dc.subject | RETINAL DYSTROPHY | en |
dc.subject | WAVELET ANALYSIS | en |
dc.subject | WAVELET SCALOGRAM | en |
dc.subject | DECISION SUPPORT SYSTEMS | en |
dc.subject | DECISION TREES | en |
dc.subject | ELECTROPHYSIOLOGY | en |
dc.subject | LEARNING ALGORITHMS | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | OPHTHALMOLOGY | en |
dc.subject | PEDIATRICS | en |
dc.subject | DECISION SUPPORT ALGORITHMS | en |
dc.subject | ELECTROPHYSIOLOGICAL STUDIES | en |
dc.subject | ELECTRORETINOGRAMS | en |
dc.subject | ELECTRORETINOGRAPHY | en |
dc.subject | EPS | en |
dc.subject | ERG | en |
dc.subject | MACHINE LEARNING METHODS | en |
dc.subject | RETINAL DYSTROPHY | en |
dc.subject | WAVELET SCALOGRAM | en |
dc.subject | WAVELET-ANALYSIS | en |
dc.subject | WAVELET ANALYSIS | en |
dc.title | Evaluation of the effectiveness of the decision support algorithm for physicians in retinal dystrophy using machine learning methods | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | |info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 50281208 | - |
dc.identifier.doi | 10.18287/2412-6179-CO-1124 | - |
dc.identifier.scopus | 85148454222 | - |
local.contributor.employee | Zhdanov, A.E., Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federation, University of Erlangen–Nuremberg, Machine Learning and Data Analytics (MaD) Lab, Carl-Thiersch-Straße 2b, Erlangen, 91052, Germany | en |
local.contributor.employee | Dolganov, A.Yu., Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federation | en |
local.contributor.employee | Zanca, D., University of Erlangen–Nuremberg, Machine Learning and Data Analytics (MaD) Lab, Carl-Thiersch-Straße 2b, Erlangen, 91052, Germany | en |
local.contributor.employee | Borisov, V.I., Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federation | en |
local.contributor.employee | Luchian, E., Polytechnic University of Bucharest, Faculty of Electrical Engineering, Splaiul Independentei 313, Bucharest, 060042, Romania | en |
local.contributor.employee | Dorosinsky, L.G., Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federation | en |
local.description.firstpage | 272 | - |
local.description.lastpage | 277 | - |
local.issue | 2 | - |
local.volume | 47 | - |
local.contributor.department | Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federation | en |
local.contributor.department | University of Erlangen–Nuremberg, Machine Learning and Data Analytics (MaD) Lab, Carl-Thiersch-Straße 2b, Erlangen, 91052, Germany | en |
local.contributor.department | Polytechnic University of Bucharest, Faculty of Electrical Engineering, Splaiul Independentei 313, Bucharest, 060042, Romania | en |
local.identifier.pure | 34854916 | - |
local.identifier.eid | 2-s2.0-85148454222 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85148454222.pdf | 4,04 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons