Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130208
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorZhdanov, A. E.en
dc.contributor.authorDolganov, A. Yu.en
dc.contributor.authorZanca, D.en
dc.contributor.authorBorisov, V. I.en
dc.contributor.authorLuchian, E.en
dc.contributor.authorDorosinsky, L. G.en
dc.date.accessioned2024-04-05T16:15:47Z-
dc.date.available2024-04-05T16:15:47Z-
dc.date.issued2023-
dc.identifier.citationЖданов, АЕ, Долганов, АЮ, Занка, Д, Борисов, ВИ, Лучиан, Е & Доросинский, ЛГ 2023, 'Оценка эффективности алгоритма поддержки принятия решения врачом при дистрофии сетчатки с использованием методов машинного обучения', Computer Optics, Том. 42, № 2, стр. 272-277. https://doi.org/10.18287/2412-6179-CO-1124harvard_pure
dc.identifier.citationЖданов, А. Е., Долганов, А. Ю., Занка, Д., Борисов, В. И., Лучиан, Е., & Доросинский, Л. Г. (2023). Оценка эффективности алгоритма поддержки принятия решения врачом при дистрофии сетчатки с использованием методов машинного обучения. Computer Optics, 42(2), 272-277. https://doi.org/10.18287/2412-6179-CO-1124apa_pure
dc.identifier.issn0134-2452-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85148454222&doi=10.18287%2f2412-6179-CO-1124&partnerID=40&md5=7ae075f3e730511e35571714e69e31661
dc.identifier.otherhttps://computeroptics.ru/KO/PDF/KO47-2/470210.pdfpdf
dc.identifier.urihttp://elar.urfu.ru/handle/10995/130208-
dc.description.abstractElectroretinography is a method of electrophysiological testing, which allows diagnosing dis-eases associated with disorders of the vascular structures of the retina. The classical analysis of the electroretinogram is based on assessing four parameters of the amplitude-time representation and often needs to be specified further using alternative diagnostic methods. This study proposes the use of an original physician decision support algorithm for diagnosing retinal dystrophy. The proposed algorithm is based on machine learning methods and uses parameters extracted from the wavelet scalogram of pediatric and adult electroretinogram signals. The study also uses a labeled database of pediatric and adult electroretinogram signals recorded using a computerized electrophysiological workstation EP-1000 (Tomey GmbH) at the IRTC Eye Microsurgery Ekaterinburg Center. The scientific novelty of this study consists in the development of special mathematical and algorithmic software for analyzing a procedure for extracting wavelet scalogram parameters of the electroretinogram signal using the cwt function of the PyWT. The basis function is a Gaussian wavelet of order 8. Also, the scientific novelty includes the development of an algorithm for analyzing electroretinogram signals that implements the classification of adult (pediatric) electro-retinogram signals 19 (20) percent more accurately than classical analysis. © 2023, Institution of Russian Academy of Sciences. All rights reserved.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipAcknowledgements: The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherInstitution of Russian Academy of Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-byother
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/unpaywall
dc.sourceComputer Optics2
dc.sourceComputer Opticsen
dc.subjectDECISION SUPPORT ALGORITHMen
dc.subjectDECISION TREESen
dc.subjectELECTROPHYSIOLOGICAL STUDYen
dc.subjectELECTRORETINOGRAMen
dc.subjectELECTRORETINOGRAPHYen
dc.subjectEPSen
dc.subjectERGen
dc.subjectRETINAL DYSTROPHYen
dc.subjectWAVELET ANALYSISen
dc.subjectWAVELET SCALOGRAMen
dc.subjectDECISION SUPPORT SYSTEMSen
dc.subjectDECISION TREESen
dc.subjectELECTROPHYSIOLOGYen
dc.subjectLEARNING ALGORITHMSen
dc.subjectMACHINE LEARNINGen
dc.subjectOPHTHALMOLOGYen
dc.subjectPEDIATRICSen
dc.subjectDECISION SUPPORT ALGORITHMSen
dc.subjectELECTROPHYSIOLOGICAL STUDIESen
dc.subjectELECTRORETINOGRAMSen
dc.subjectELECTRORETINOGRAPHYen
dc.subjectEPSen
dc.subjectERGen
dc.subjectMACHINE LEARNING METHODSen
dc.subjectRETINAL DYSTROPHYen
dc.subjectWAVELET SCALOGRAMen
dc.subjectWAVELET-ANALYSISen
dc.subjectWAVELET ANALYSISen
dc.titleEvaluation of the effectiveness of the decision support algorithm for physicians in retinal dystrophy using machine learning methodsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.type|info:eu-repo/semantics/publishedVersionen
dc.identifier.rsi50281208-
dc.identifier.doi10.18287/2412-6179-CO-1124-
dc.identifier.scopus85148454222-
local.contributor.employeeZhdanov, A.E., Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federation, University of Erlangen–Nuremberg, Machine Learning and Data Analytics (MaD) Lab, Carl-Thiersch-Straße 2b, Erlangen, 91052, Germanyen
local.contributor.employeeDolganov, A.Yu., Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federationen
local.contributor.employeeZanca, D., University of Erlangen–Nuremberg, Machine Learning and Data Analytics (MaD) Lab, Carl-Thiersch-Straße 2b, Erlangen, 91052, Germanyen
local.contributor.employeeBorisov, V.I., Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federationen
local.contributor.employeeLuchian, E., Polytechnic University of Bucharest, Faculty of Electrical Engineering, Splaiul Independentei 313, Bucharest, 060042, Romaniaen
local.contributor.employeeDorosinsky, L.G., Ural Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federationen
local.description.firstpage272-
local.description.lastpage277-
local.issue2-
local.volume47-
local.contributor.departmentUral Federal University named after the first President of Russia B.N.Yeltsin, Engineering School of Information Technologies, Telecommunications and Control Systems, Mira Str. 19, Yekaterinburg, 620078, Russian Federationen
local.contributor.departmentUniversity of Erlangen–Nuremberg, Machine Learning and Data Analytics (MaD) Lab, Carl-Thiersch-Straße 2b, Erlangen, 91052, Germanyen
local.contributor.departmentPolytechnic University of Bucharest, Faculty of Electrical Engineering, Splaiul Independentei 313, Bucharest, 060042, Romaniaen
local.identifier.pure34854916-
local.identifier.eid2-s2.0-85148454222-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85148454222.pdf4,04 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons