Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/127438
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAli, Md. Yasinen
dc.date.accessioned2023-10-27T08:13:07Z-
dc.date.available2023-10-27T08:13:07Z-
dc.date.issued2023-
dc.identifier.citationAli Md. Yasin. SOME TRIGONOMETRIC SIMILARITY MEASURES OF COMPLEX FUZZY SETS WITH APPLICATION / Md. Yasin Ali. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 1. — P. 18-28.en
dc.identifier.issn2414-3952online
dc.identifier.otherhttps://umjuran.ru/index.php/umj/article/view/560
dc.identifier.urihttp://elar.urfu.ru/handle/10995/127438-
dc.description.abstractSimilarity measures of fuzzy sets are applied to compare the closeness among fuzzy sets. These measures have numerous applications in pattern recognition, image processing, texture synthesis, medical diagnosis, etc. However, in many cases of pattern recognition, digital image processing, signal processing, and so forth, the similarity measures of the fuzzy sets are not appropriate due to the presence of dual information of an object, such as amplitude term and phase term. In these cases, similarity measures of complex fuzzy sets are the most suitable for measuring proximity between objects with two-dimensional information. In the present paper, we propose some trigonometric similarity measures of the complex fuzzy sets involving similarity measures based on the sine, tangent, cosine, and cotangent functions. Furthermore, in many situations in real life, the weight of an attribute plays an important role in making the right decisions using similarity measures. So in this paper, we also consider the weighted trigonometric similarity measures of the complex fuzzy sets, namely, the weighted similarity measures based on the sine, tangent, cosine, and cotangent functions. Some properties of the similarity measures and the weighted similarity measures are discussed. We also apply our proposed methods to the pattern recognition problem and compare them with existing methods to show the validity and effectiveness of our proposed methods.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.relation.ispartofUral Mathematical Journal. 2023. Volume 9. № 1en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectCOMPLEX FUZZY SETen
dc.subjectSIMILARITY MEASURESen
dc.subjectPATTERN RECOGNITIONen
dc.titleSOME TRIGONOMETRIC SIMILARITY MEASURES OF COMPLEX FUZZY SETS WITH APPLICATIONen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi54265302
dc.identifier.doi10.15826/umj.2023.1.002en
local.description.firstpage18
local.description.lastpage28
local.issue1
local.volume9
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2023_9_1_003.pdf154,29 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons