Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/127432
Title: HYERS-ULAM-RASSIAS STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS WITH A GENERALIZED ACTIONS ON THE RIGHT-HAND SIDE
Authors: Sesekin, A. N.
Kandrina, A. D.
Issue Date: 2023
Citation: Sesekin A. N. HYERS-ULAM-RASSIAS STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS WITH A GENERALIZED ACTIONS ON THE RIGHT-HAND SIDE / A. N. Sesekin, A. D. Kandrina. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 1. — P. 147-152.
Abstract: The paper considers the Hyers-Ulam-Rassias stability for systems of nonlinear differential equations with a generalized action on the right-hand side, for example, containing impulses - delta functions. The fact that the derivatives in the equation are considered distributions required a correction of the well-known Hyers-Ulam-Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure the property under study.
Keywords: HYERS-ULAM-RASSIAS STABILITY
DIFFERENTIAL EQUATIONS
GENERALIZED ACTIONS
DISCONTINUOUS TRAJECTORIES
URI: http://elar.urfu.ru/handle/10995/127432
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
RSCI ID: 54265313
ISSN: 2414-3952
DOI: 10.15826/umj.2023.1.013
Sponsorship: This work was supported by the Russian Science Foundation (project no. 22-21-00714).
RSCF project card: 22-21-007
Origin: Ural Mathematical Journal. 2023. Volume 9. № 1
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2023_9_1_014.pdf118,77 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons