Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/122286
Название: | Approximation of Positional Impulse Controls for Differential Inclusions |
Авторы: | Finogenko, I. A. Sesekin, A. N. |
Дата публикации: | 2022 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Finogenko I. A. Approximation of Positional Impulse Controls for Differential Inclusions / I. A. Finogenko, A. N. Sesekin. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 43-54. |
Аннотация: | Nonlinear control systems presented as differential inclusions with positional impulse controls are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at each time. Such a control (“running impulse”), as a generalized function, has no meaning and is formalized as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the control interval. The system responds to such control by discontinuous trajectories, which form a network of so-called “Euler’s broken lines.” If, as a result of each such correction, the phase point of the object under study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the system, and then the network of “Euler’s broken lines” is called an impulse-sliding mode. The paper deals with the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The research is based on Yosida’s approximation of set-valued mappings and some well-known facts for ordinary differential equations with impulses. |
Ключевые слова: | POSITIONAL IMPULSE CONTROL DIFFERENTIAL INCLUSION IMPULSE-SLIDING MODE |
URI: | http://elar.urfu.ru/handle/10995/122286 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор РИНЦ: | 49240243 |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2022.1.005 |
Источники: | Ural Mathematical Journal. 2022. Volume 8. № 1 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2022_8_1_006.pdf | 185,23 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons