Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/122286
Название: Approximation of Positional Impulse Controls for Differential Inclusions
Авторы: Finogenko, I. A.
Sesekin, A. N.
Дата публикации: 2022
Издатель: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Библиографическое описание: Finogenko I. A. Approximation of Positional Impulse Controls for Differential Inclusions / I. A. Finogenko, A. N. Sesekin. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 43-54.
Аннотация: Nonlinear control systems presented as differential inclusions with positional impulse controls are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at each time. Such a control (“running impulse”), as a generalized function, has no meaning and is formalized as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the control interval. The system responds to such control by discontinuous trajectories, which form a network of so-called “Euler’s broken lines.” If, as a result of each such correction, the phase point of the object under study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the system, and then the network of “Euler’s broken lines” is called an impulse-sliding mode. The paper deals with the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The research is based on Yosida’s approximation of set-valued mappings and some well-known facts for ordinary differential equations with impulses.
Ключевые слова: POSITIONAL IMPULSE CONTROL
DIFFERENTIAL INCLUSION
IMPULSE-SLIDING MODE
URI: http://elar.urfu.ru/handle/10995/122286
Условия доступа: Creative Commons Attribution License
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
Идентификатор РИНЦ: 49240243
ISSN: 2414-3952
DOI: 10.15826/umj.2022.1.005
Источники: Ural Mathematical Journal. 2022. Volume 8. № 1
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2022_8_1_006.pdf185,23 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons