Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/122286
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Finogenko, I. A. | en |
dc.contributor.author | Sesekin, A. N. | en |
dc.date.accessioned | 2023-05-12T07:49:10Z | - |
dc.date.available | 2023-05-12T07:49:10Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Finogenko I. A. Approximation of Positional Impulse Controls for Differential Inclusions / I. A. Finogenko, A. N. Sesekin. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 43-54. | en |
dc.identifier.issn | 2414-3952 | online |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/view/470 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/122286 | - |
dc.description.abstract | Nonlinear control systems presented as differential inclusions with positional impulse controls are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at each time. Such a control (“running impulse”), as a generalized function, has no meaning and is formalized as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the control interval. The system responds to such control by discontinuous trajectories, which form a network of so-called “Euler’s broken lines.” If, as a result of each such correction, the phase point of the object under study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the system, and then the network of “Euler’s broken lines” is called an impulse-sliding mode. The paper deals with the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The research is based on Yosida’s approximation of set-valued mappings and some well-known facts for ordinary differential equations with impulses. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences | en |
dc.publisher | Ural Federal University named after the first President of Russia B.N. Yeltsin | en |
dc.relation.ispartof | Ural Mathematical Journal. 2022. Volume 8. № 1 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | POSITIONAL IMPULSE CONTROL | en |
dc.subject | DIFFERENTIAL INCLUSION | en |
dc.subject | IMPULSE-SLIDING MODE | en |
dc.title | Approximation of Positional Impulse Controls for Differential Inclusions | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 49240243 | |
dc.identifier.doi | 10.15826/umj.2022.1.005 | en |
local.description.firstpage | 43 | |
local.description.lastpage | 54 | |
local.issue | 1 | |
local.volume | 8 | |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2022_8_1_006.pdf | 185,23 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons