Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/122286
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorFinogenko, I. A.en
dc.contributor.authorSesekin, A. N.en
dc.date.accessioned2023-05-12T07:49:10Z-
dc.date.available2023-05-12T07:49:10Z-
dc.date.issued2022-
dc.identifier.citationFinogenko I. A. Approximation of Positional Impulse Controls for Differential Inclusions / I. A. Finogenko, A. N. Sesekin. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 43-54.en
dc.identifier.issn2414-3952online
dc.identifier.otherhttps://umjuran.ru/index.php/umj/article/view/470
dc.identifier.urihttp://elar.urfu.ru/handle/10995/122286-
dc.description.abstractNonlinear control systems presented as differential inclusions with positional impulse controls are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at each time. Such a control (“running impulse”), as a generalized function, has no meaning and is formalized as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the control interval. The system responds to such control by discontinuous trajectories, which form a network of so-called “Euler’s broken lines.” If, as a result of each such correction, the phase point of the object under study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the system, and then the network of “Euler’s broken lines” is called an impulse-sliding mode. The paper deals with the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The research is based on Yosida’s approximation of set-valued mappings and some well-known facts for ordinary differential equations with impulses.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2022. Volume 8. № 1en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectPOSITIONAL IMPULSE CONTROLen
dc.subjectDIFFERENTIAL INCLUSIONen
dc.subjectIMPULSE-SLIDING MODEen
dc.titleApproximation of Positional Impulse Controls for Differential Inclusionsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi49240243
dc.identifier.doi10.15826/umj.2022.1.005en
local.description.firstpage43
local.description.lastpage54
local.issue1
local.volume8
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2022_8_1_006.pdf185,23 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons