Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/122271
Title: Approximate Controllability of Impulsive Stochastic Systems Driven by Rosenblatt Process and Brownian Motion
Authors: Benchaabane, A.
Issue Date: 2022
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Benchaabane A. Approximate Controllability of Impulsive Stochastic Systems Driven by Rosenblatt Process and Brownian Motion / A. Benchaabane. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 59-70.
Abstract: In this paper we consider a class of impulsive stochastic functional differential equations driven simultaneously by a Rosenblatt process and standard Brownian motion in a Hilbert space. We prove an existence and uniqueness result and we establish some conditions ensuring the approximate controllability for the mild solution by means of the Banach fixed point principle. At the end we provide a practical example in order to illustrate the viability of our result.
Keywords: APPROXIMATE CONTROLLABILITY
FIXED POINT THEOREM
ROSENBLATT PROCESS
MILD SOLUTION STOCHASTIC IMPULSIVE SYSTEMS
URI: http://elar.urfu.ru/handle/10995/122271
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
RSCI ID: 50043142
ISSN: 2414-3952
DOI: 10.15826/umj.2022.2.005
Origin: Ural Mathematical Journal. 2022. Volume 8. № 2
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2022_8_2_006.pdf160,64 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons