Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/118413
Название: | On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle subscriptL2q |
Авторы: | Zenkov, V. I. |
Дата публикации: | 2021 |
Издатель: | Pleiades journals |
Библиографическое описание: | Zenkov V. I. On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle subscriptL2q / V. I. Zenkov // Proceedings of the Steklov Institute of Mathematics. — 2021. — Vol. 315. — P. S250-S260. |
Аннотация: | According to P. Hall, a subgroup H of a finite group G is called pronormal in G if, for any element g of G, the subgroups H and Hg are conjugate in (Formula presented.). The simplest examples of pronormal subgroups of finite groups are normal subgroups, maximal subgroups, and Sylow subgroups. Pronormal subgroups of finite groups were studied by a number of authors. For example, Legovini (1981) studied finite groups in which every subgroup is subnormal or pronormal. Later, Li and Zhang (2013) described the structure of a finite group G in which, for a second maximal subgroup H, its index in HsuperscriptHg does not contain squares for any g from G. A number of papers by Kondrat’ev, Maslova, Revin, and Vdovin (2012–2019) are devoted to studying the pronormality of subgroups in a finite simple nonabelian group and, in particular, the existence of a nonpronormal subgroup of odd index in a finite simple nonabelian group. In The Kourovka Notebook, the author formulated Question 19.109 on the equivalence in a finite simple nonabelian group of the condition of pronormality of its second maximal subgroups and the condition of Hallness of its maximal subgroups. Tyutyanov gave a counterexample subscriptL2superscript211 to this question. In the present paper, we provide necessary and sufficient conditions for the pronormality of second maximal subgroups in the group subscriptL2q. In addition, for q11, we find the finite almost simple groups with socle subscriptL2q in which all second maximal subgroups are pronormal. © 2021, Pleiades Publishing, Ltd. |
Ключевые слова: | FINITE GROUP MAXIMAL SUBGROUP PRONORMAL SUBGROUP SIMPLE GROUP |
URI: | http://elar.urfu.ru/handle/10995/118413 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 48128555 |
Идентификатор SCOPUS: | 85123123293 |
Идентификатор WOS: | 000745120100020 |
Идентификатор PURE: | 29475464 |
ISSN: | 815438 |
DOI: | 10.1134/S0081543821060201 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85123123293.pdf | 227,85 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.