Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118392
Название: On a Reconstruction of a Solely Time-Dependent Source in a Time-Fractional Diffusion Equation with Non-smooth Solutions
Авторы: Hendy, A. S.
Van Bockstal, K.
Дата публикации: 2022
Издатель: Springer
Библиографическое описание: Hendy A. S. On a Reconstruction of a Solely Time-Dependent Source in a Time-Fractional Diffusion Equation with Non-smooth Solutions / A. S. Hendy, K. Van Bockstal // Journal of Scientific Computing. — 2022. — Vol. 90. — Iss. 1. — 41.
Аннотация: An inverse source problem for a non-automonous time fractional diffusion equation of order (0 < β< 1) is considered in a bounded Lipschitz domain in Rd. The missing solely time-dependent source is recovered from an additional integral measurement. The existence, uniqueness and regularity of a weak solution is studied. We design two numerical algorithms based on Rothe’s method over uniform and graded grids, derive a priori estimates and prove convergence of iterates towards the exact solution. An essential feature of the fractional subdiffusion problem is that the solution lacks the smoothness near the initial time, although it would be smooth away from t= 0. Rothe’s method on a uniform grid addresses the existence of a such a solution (non-smooth with tγ term where 1 > γ> β) under low regularity assumptions, whilst Rothe’s method over graded grids has the advantage to cope better with the behaviour at t= 0 (also here tβ is included in the class of admissible solutions) for the considered problems. The theoretical obtained results are supported by numerical experiments and stay valid in case of smooth solutions to the problem. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Ключевые слова: CONVERGENCE
FRACTIONAL DIFFUSION
INVERSE SOURCE PROBLEM
PRIOR ESTIMATES
RECONSTRUCTION
UNIFORM AND NONUNIFORM (GRADED) MESHES
CONVERGENCE OF NUMERICAL METHODS
INVERSE PROBLEMS
NONLINEAR EQUATIONS
PARTIAL DIFFERENTIAL EQUATIONS
CONVERGENCE
FRACTIONAL DIFFUSION
GRADED MESHES
INVERSE SOURCE PROBLEM
PRIOR ESTIMATES
RECONSTRUCTION
S-METHOD
TIME DEPENDENT SOURCE
TIME FRACTIONAL DIFFUSION EQUATION
UNIFORM AND NONUNIFORM (GRADED) MESH
DIFFUSION
URI: http://elar.urfu.ru/handle/10995/118392
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор РИНЦ: 47543764
Идентификатор SCOPUS: 85121025304
Идентификатор WOS: 000729077600001
Идентификатор PURE: 29143351
ISSN: 8857474
DOI: 10.1007/s10915-021-01704-8
Сведения о поддержке: 106016/12P2919N; Universiteit Gent; Russian Science Foundation, RSF: 22-21-00075
A. S. Hendy wishes to acknowledge the support of the RSF grant, project 22-21-00075. K. Van Bockstal is supported by a postdoctoral fellowship of the Research Foundation - Flanders (106016/12P2919N).
The authors are grateful to the handling editor and the anonymous referees for their constructive feedback and helpful suggestions, which highly improved the paper. The authors would also like to thank Professor Vladimir G. Pimenov of Ural Federal University and Professor Mari?n Slodi?ka of Ghent University, for their generosity and guidance, which has always been so valuable to them.
Карточка проекта РНФ: 22-21-00075
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85121025304.pdf378,82 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.