Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118381
Название: First Experimental Confirmation of the CH3O + H2CO → CH3OH + HCO Reaction: Expanding the CH3OH Formation Mechanism in Interstellar Ices
Авторы: Santos, J. C.
Chuang, K. -J.
Lamberts, T.
Fedoseev, G.
Ioppolo, S.
Linnartz, H.
Дата публикации: 2022
Библиографическое описание: First Experimental Confirmation of the CH3O + H2CO → CH3OH + HCO Reaction: Expanding the CH3OH Formation Mechanism in Interstellar Ices / J. C. Santos, K. -J. Chuang, T. Lamberts et al. // Astrophysical Journal Letters. — 2022. — Vol. 931. — Iss. 2. — L33.
Аннотация: The successive addition of H atoms to CO in the solid phase has been hitherto regarded as the primary route to form methanol in dark molecular clouds. However, recent Monte Carlo simulations of interstellar ices alternatively suggested the radical-molecule H-atom abstraction reaction CH3O + H2CO → CH3OH + HCO, in addition to CH3O + H → CH3OH, as a very promising and possibly dominating (70%-90%) final step to form CH3OH in those environments. Here, we compare the contributions of these two steps leading to methanol by experimentally investigating hydrogenation reactions on H2CO and D2CO ices, which ensures comparable starting points between the two scenarios. The experiments are performed under ultrahigh vacuum conditions and astronomically relevant temperatures, with H:H2CO (or D2CO) flux ratios of 10:1 and 30:1. The radical-molecule route in the partially deuterated scenario, CHD2O + D2CO → CHD2OD + DCO, is significantly hampered by the isotope effect in the D-abstraction process, and can thus be used as an artifice to probe the efficiency of this step. We observe a significantly smaller yield of D2CO + H products in comparison to H2CO + H, implying that the CH3O-induced abstraction route must play an important role in the formation of methanol in interstellar ices. Reflection-absorption infrared spectroscopy and temperature-programmed desorption-quadrupole mass spectrometry analyses are used to quantify the species in the ice. Both analytical techniques indicate constant contributions of ∼80% for the abstraction route in the 10-16 K interval, which agrees well with the Monte Carlo calculations. Additional H2CO + D experiments confirm these conclusions. © 2022. The Author(s). Published by the American Astronomical Society.
URI: http://elar.urfu.ru/handle/10995/118381
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85131674933
Идентификатор WOS: 000806541900001
Идентификатор PURE: 30540203
DOI: 10.3847/2041-8213/ac7158
Сведения о поддержке: DNRF150; Royal Society; Danmarks Grundforskningsfond, DNRF; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO: 722.017.008; Ministry of Science and Higher Education of the Russian Federation: FEUZ-2020-0038; Nederlandse Onderzoekschool Voor Astronomie, NOVA
The authors would like to thank Herma Cuppen for many guiding scientific discussions on the mechanism in question. This work has been supported by the Danish National Research Foundation through the Center of Excellence InterCat (grant agreement No. DNRF150). It has also been funded by the Dutch Astrochemistry Network II (DANII) and NOVA (the Netherlands Research School for Astronomy). T.L. is grateful for support from NWO via a VENI fellowship (722.017.008). G.F. acknowledges financial support from the Russian Ministry of Science and Higher Education via the State Assignment Contract FEUZ-2020-0038. S.I. acknowledges the Royal Society for financial support.
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85131674933.pdf710,96 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.