Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/118309
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKrouglov, V. N.en
dc.contributor.authorGruh, A. G.en
dc.contributor.authorGapak, A. L.en
dc.contributor.authorKhurelchuluun, I.en
dc.date.accessioned2022-10-19T05:24:21Z-
dc.date.available2022-10-19T05:24:21Z-
dc.date.issued2020-
dc.identifier.citationThe use of homomorphic image processing to analyze coke grading / V. N. Krouglov, A. G. Gruh, A. L. Gapak et al. // IOP Conference Series: Materials Science and Engineering. — 2020. — Vol. 966. — Iss. 1. — 12135.en
dc.identifier.issn17578981-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097043609&doi=10.1088%2f1757-899X%2f966%2f1%2f012135&partnerID=40&md5=6537591ac62842087abf86b97cc2ef33link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/118309-
dc.description.abstractThe estimation of the geometrical sizes of particles of crushed solid fuel (coke), moving on the conveyor belt, is associated with a number of technical difficulties. One of the problems is the need for a non-invasive way of determining particle geometry. A promising way to solve it is to use devices based on machine vision systems. This paper describes the algorithmic part of the prototype of such a device. It is proposed to improve the quality of boundary detection between fragments of coke particles to perform homomorphic processing of the initial low-contrast video images. The algorithm for calculating the Fourier spectrum has been optimized based on the Fast Fourier Transform (FFT) with the mixed base. As a result, it becomes possible to reduce the computational cost for calculating two-dimensional Fourier spectra for complex multiplication operations by 1.33 times, and the number of complex addition operations by 1.67 times. The software of the prototype, built using the proposed methods, made it possible to obtain good convergence of the results for assessing the particle size distribution of samples of crushed coke with laboratory estimates. Thus, the maximum absolute average error of the machine vision system in assessing the size of crushed coke is only 3.37%, and the maximum error for all measurement classes do not exceed 6.9%. © Published under licence by IOP Publishing Ltd.en
dc.description.sponsorshipFoundation for Assistance to Small Innovative Enterprises in Science and Technology, FASIEen
dc.description.sponsorshipThe work was performed under state contract 3170ΓC1/48564, grant from the FASIE.en
dc.description.sponsorshipGoman V.Mironova M.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherIOP Publishing Ltden
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceIOP Conference Series: Materials Science and Engineeringen
dc.titleThe use of homomorphic image processing to analyze coke gradingen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.name15th International Conference on Industrial Manufacturing and Metallurgy, ICIMM 2020en
dc.conference.date18 June 2020 through 19 June 2020-
dc.identifier.doi10.1088/1757-899X/966/1/012135-
dc.identifier.scopus85097043609-
local.contributor.employeeKrouglov, V.N., Ural Federal University Named after the First President of Russia B N Yeltsin, 19 Mira str., Yekaterinburg, 620000, Russian Federationen
local.contributor.employeeGruh, A.G., EVRAZ KGOK JSC, 2 Sverdlova str., Kachkanar, 624350, Russian Federationen
local.contributor.employeeGapak, A.L., EVRAZ KGOK JSC, 2 Sverdlova str., Kachkanar, 624350, Russian Federationen
local.contributor.employeeKhurelchuluun, I., Erdenet Mining Corporation SOE, Erdenet, Mongolia, 61027, Mongoliaen
local.issue1-
local.volume966-
local.contributor.departmentUral Federal University Named after the First President of Russia B N Yeltsin, 19 Mira str., Yekaterinburg, 620000, Russian Federationen
local.contributor.departmentEVRAZ KGOK JSC, 2 Sverdlova str., Kachkanar, 624350, Russian Federationen
local.contributor.departmentErdenet Mining Corporation SOE, Erdenet, Mongolia, 61027, Mongoliaen
local.identifier.pure20234244-
local.description.order12135-
local.identifier.eid2-s2.0-85097043609-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85097043609.pdf633,78 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.