Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118168
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKovalevsky, A. A.en
dc.date.accessioned2022-10-19T05:23:18Z-
dc.date.available2022-10-19T05:23:18Z-
dc.date.issued2021-
dc.identifier.citationKovalevsky A. A. On the convergence of solutions of variational problems with pointwise functional constraints in variable domains / A. A. Kovalevsky // Journal of Mathematical Sciences (United States). — 2021. — Vol. 254. — Iss. 3. — P. 375-396.en
dc.identifier.issn10723374-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85103101429&doi=10.1007%2fs10958-021-05310-9&partnerID=40&md5=cb6c31a5971fd11dcb083c62ccd89463link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/118168-
dc.description.abstractWe consider a sequence of convex integral functionals Fs : W1,p(Ωs) → ℝ and a sequence of weakly lower semicontinuous and, in general, nonintegral functionals Gs : W1,p(Ωs) → ℝ, where {Ωs} is a sequence of domains in ℝn contained in a bounded domain Ω ⊂ ℝn (n ⩾ 2) p > 1. Along with this, we consider a sequence of closed convex sets Vs = {v ∈ W1,p(Ωs) : Ms(v) ⩽ 0 a.e. in Ωs}, where Ms is a mapping from W1,p(Ωs) to the set of all functions defined on Ωs. We establish conditions under which minimizers and minimum values of the functionals Fs +Gs on the sets Vs converge to a minimizer and the minimum value of a functional on the set V = {v ∈ W1,p(Ω) : M(v) ⩽ 0 a.e. in Ω}, where M is a mapping from W1,p(Ω) to the set of all functions defined on Ω. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.en
dc.description.sponsorshipThis work was supported by the Russian Academic Excellence Project (agreement No. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJournal of Mathematical Sciences (United States)en
dc.subjectINTEGRAL FUNCTIONALen
dc.subjectMINIMIZERen
dc.subjectMINIMUM VALUEen
dc.subjectPOINTWISE FUNCTIONAL CONSTRAINTen
dc.subjectSTRONG CONNECTEDNESSen
dc.subjectVARIABLE DOMAINSen
dc.subjectVARIATIONAL PROBLEMen
dc.subjectΓ-CONVERGENCEen
dc.titleOn the convergence of solutions of variational problems with pointwise functional constraints in variable domainsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi46758683-
dc.identifier.doi10.1007/s10958-021-05310-9-
dc.identifier.scopus85103101429-
local.contributor.employeeKovalevsky, A.A., Krasovskii Institute of Mathematics and Mechanics, The Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federationen
local.description.firstpage375-
local.description.lastpage396-
local.issue3-
local.volume254-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, The Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federationen
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federationen
local.identifier.pure21172113-
local.identifier.eid2-s2.0-85103101429-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85103101429.pdf346,74 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.