Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/118168
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kovalevsky, A. A. | en |
dc.date.accessioned | 2022-10-19T05:23:18Z | - |
dc.date.available | 2022-10-19T05:23:18Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Kovalevsky A. A. On the convergence of solutions of variational problems with pointwise functional constraints in variable domains / A. A. Kovalevsky // Journal of Mathematical Sciences (United States). — 2021. — Vol. 254. — Iss. 3. — P. 375-396. | en |
dc.identifier.issn | 10723374 | - |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103101429&doi=10.1007%2fs10958-021-05310-9&partnerID=40&md5=cb6c31a5971fd11dcb083c62ccd89463 | link |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/118168 | - |
dc.description.abstract | We consider a sequence of convex integral functionals Fs : W1,p(Ωs) → ℝ and a sequence of weakly lower semicontinuous and, in general, nonintegral functionals Gs : W1,p(Ωs) → ℝ, where {Ωs} is a sequence of domains in ℝn contained in a bounded domain Ω ⊂ ℝn (n ⩾ 2) p > 1. Along with this, we consider a sequence of closed convex sets Vs = {v ∈ W1,p(Ωs) : Ms(v) ⩽ 0 a.e. in Ωs}, where Ms is a mapping from W1,p(Ωs) to the set of all functions defined on Ωs. We establish conditions under which minimizers and minimum values of the functionals Fs +Gs on the sets Vs converge to a minimizer and the minimum value of a functional on the set V = {v ∈ W1,p(Ω) : M(v) ⩽ 0 a.e. in Ω}, where M is a mapping from W1,p(Ω) to the set of all functions defined on Ω. © 2021, Springer Science+Business Media, LLC, part of Springer Nature. | en |
dc.description.sponsorship | This work was supported by the Russian Academic Excellence Project (agreement No. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Journal of Mathematical Sciences (United States) | en |
dc.subject | INTEGRAL FUNCTIONAL | en |
dc.subject | MINIMIZER | en |
dc.subject | MINIMUM VALUE | en |
dc.subject | POINTWISE FUNCTIONAL CONSTRAINT | en |
dc.subject | STRONG CONNECTEDNESS | en |
dc.subject | VARIABLE DOMAINS | en |
dc.subject | VARIATIONAL PROBLEM | en |
dc.subject | Γ-CONVERGENCE | en |
dc.title | On the convergence of solutions of variational problems with pointwise functional constraints in variable domains | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 46758683 | - |
dc.identifier.doi | 10.1007/s10958-021-05310-9 | - |
dc.identifier.scopus | 85103101429 | - |
local.contributor.employee | Kovalevsky, A.A., Krasovskii Institute of Mathematics and Mechanics, The Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.description.firstpage | 375 | - |
local.description.lastpage | 396 | - |
local.issue | 3 | - |
local.volume | 254 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, The Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation | en |
local.contributor.department | Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation | en |
local.identifier.pure | 21172113 | - |
local.identifier.eid | 2-s2.0-85103101429 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85103101429.pdf | 346,74 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.