Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/118098
Название: | Mechanical Force Acting on Ferrogel in a Non-Uniform Magnetic Field: Measurements and Modeling |
Авторы: | Blyakhman, F. A. Safronov, A. P. Zubarev, A. Y. Melnikov, G. Y. Sokolov, S. Y. Larrañaga, Varga, A. Kurlyandskaya, G. V. |
Дата публикации: | 2022 |
Издатель: | MDPI |
Библиографическое описание: | Mechanical Force Acting on Ferrogel in a Non-Uniform Magnetic Field: Measurements and Modeling / F. A. Blyakhman, A. P. Safronov, A. Y. Zubarev et al. // Micromachines. — 2022. — Vol. 13. — Iss. 8. — 1165. |
Аннотация: | The development of magnetoactive microsystems for targeted drug delivery, magnetic biodetection, and replacement therapy is an important task of present day biomedical research. In this work, we experimentally studied the mechanical force acting in cylindrical ferrogel samples due to the application of a non-uniform magnetic field. A commercial microsystem is not available for this type of experimental study. Therefore, the original experimental setup for measuring the mechanical force on ferrogel in a non-uniform magnetic field was designed, calibrated, and tested. An external magnetic field was provided by an electromagnet. The maximum intensity at the surface of the electromagnet was 39.8 kA/m and it linearly decreased within 10 mm distance from the magnet. The Ferrogel samples were based on a double networking polymeric structure which included a chemical network of polyacrylamide and a physical network of natural polysaccharide guar. Magnetite particles, 0.25 micron in diameter, were embedded in the hydrogel structure, up to 24% by weight. The forces of attraction between an electromagnet and cylindrical ferrogel samples, 9 mm in height and 13 mm in diameter, increased with field intensity and the concentration of magnetic particles, and varied within 0.1–30 mN. The model provided a fair evaluation of the mechanical forces that emerged in ferrogel samples placed in a non-uniform magnetic field and proved to be useful for predicting the deformation of ferrogels in practical bioengineering applications. © 2022 by the authors. |
Ключевые слова: | ATTRACTIVE FORCE BIOMEDICAL APPLICATIONS BIOMIMETIC MATERIALS FERROGELS MAGNETIC FIELD MAGNETIC PARTICLES MODELING BIOMIMETICS CONTROLLED DRUG DELIVERY ELECTROMAGNETIC FIELD EFFECTS ELECTROMAGNETS FUNCTIONAL POLYMERS MAGNETITE MICROSYSTEMS TARGETED DRUG DELIVERY ATTRACTIVE FORCE BIOMEDICAL APPLICATIONS FERROGELS MAGNETIC FIELD MODELS MAGNETIC FIELDS MEASUREMENTS MAGNETIC PARTICLE MAGNETIC-FIELD MECHANICAL FORCE MODELING NONUNIFORM MAGNETIC FIELDS MEDICAL APPLICATIONS |
URI: | http://elar.urfu.ru/handle/10995/118098 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85137602695 |
Идентификатор WOS: | 000845441300001 |
Идентификатор PURE: | 30899101 |
ISSN: | 2072666X |
DOI: | 10.3390/mi13081165 |
Сведения о поддержке: | Ministry of Education and Science of the Russian Federation, Minobrnauka: FEUZ-2020-0051; Russian Science Foundation, RSF: 20-12-00031; Ministry of Health of the Russian Federation: 121032300335-1 This study was in part supported by the program of the Ministry of Health of the Russian Federation (project 121032300335-1). A.Yu. Zubarev and A.P. Safronov acknowledge the financial support of the Russian Science Foundation for theoretical modeling and the numerical verification of the model (grant 20-12-00031). This work was in part financially supported by (G.V. Kurlyandskaya and G.Yu. Melnikov) the Ministry of Science and Higher Education of the Russian Federation (grant number FEUZ-2020-0051). |
Карточка проекта РНФ: | 20-12-00031 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85137602695.pdf | 3,41 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.