Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118096
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPlotnikov, L.en
dc.contributor.authorPlotnikov, I.en
dc.contributor.authorOsipov, L.en
dc.contributor.authorSlednev, V.en
dc.contributor.authorShurupov, V.en
dc.date.accessioned2022-10-19T05:22:06Z-
dc.date.available2022-10-19T05:22:06Z-
dc.date.issued2022-
dc.identifier.citationAn Indirect Method for Determining the Local Heat Transfer Coefficient of Gas Flows in Pipelines / L. Plotnikov, I. Plotnikov, L. Osipov et al. // Sensors. — 2022. — Vol. 22. — Iss. 17. — 6395.en
dc.identifier.issn14248220-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85137585464&doi=10.3390%2fs22176395&partnerID=40&md5=4f47fed7ce9866f4993d9ef21a290573link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/118096-
dc.description.abstractAn indirect method and procedure for determining the local heat transfer coefficient in experimental studies on the intensity of heat transfer at a gas–surface interface is described. The article provides an overview of modern approaches and technical devices for determining the heat flux or friction stresses on surfaces in the study of thermophysical processes. The proposed method uses a constant-temperature hot-wire anemometer and a sensor with a thread sensitive element fixed on the surface of a fluoroplastic substrate. A substrate with the sensor’s sensitive element was mounted flush with the wall of the investigated pipeline. This method is based on the Kutateladze–Leontiev approach (the laws of friction and heat transfer) and the hydrodynamic analogy of heat transfer (the Reynolds analogy): this is an assumption about the unity of momentum and heat transfer in a turbulent flow, which establishes a quantitative relationship between friction stresses on the heat exchange surface and heat transfer through this surface. The article presents a method for determining the speed of the developed measuring system. An example of a successful application of the proposed method in relation to the study of thermomechanical processes in the gas exchange systems of reciprocating internal combustion engines is described. © 2022 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceSensorsen
dc.subjectCONSTANT-TEMPERATURE HOT-WIRE ANEMOMETERen
dc.subjectENGINE INTAKE SYSTEMen
dc.subjectGAS FLOWSen
dc.subjectHEAT TRANSFER COEFFICIENTen
dc.subjectPIPELINESen
dc.subjectTHREAD SENSORen
dc.subjectANEMOMETERSen
dc.subjectFRICTIONen
dc.subjectHEAT FLUXen
dc.subjectHEAT TRANSFER COEFFICIENTSen
dc.subjectPHASE INTERFACESen
dc.subjectPIPELINESen
dc.subjectCONSTANT TEMPERATUREen
dc.subjectCONSTANT-TEMPERATURE HOT-WIRE ANEMOMETERen
dc.subjectENGINE INTAKEen
dc.subjectENGINE INTAKE SYSTEMen
dc.subjectHEAT TRANSFER CO-EFFICIENTSen
dc.subjectHOT WIRE ANEMOMETERSen
dc.subjectINDIRECT METHODSen
dc.subjectLOCAL HEAT TRANSFER COEFFICIENTen
dc.subjectTEMPERATURE (HOT)en
dc.subjectTHREAD SENSORen
dc.subjectFLOW OF GASESen
dc.titleAn Indirect Method for Determining the Local Heat Transfer Coefficient of Gas Flows in Pipelinesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/s22176395-
dc.identifier.scopus85137585464-
local.contributor.employeePlotnikov, L., Department of Turbines and Engines, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeePlotnikov, I., Department of Electric Drives and Industrial Installations Automation, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeOsipov, L., Department of Turbines and Engines, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeSlednev, V., Department of Turbines and Engines, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeShurupov, V., Department of Turbines and Engines, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.issue17-
local.volume22-
dc.identifier.wos000851820600001-
local.contributor.departmentDepartment of Turbines and Engines, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Electric Drives and Industrial Installations Automation, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira, 19, Yekaterinburg, 620002, Russian Federationen
local.identifier.pure30898159-
local.description.order6395-
local.identifier.eid2-s2.0-85137585464-
local.identifier.wosWOS:000851820600001-
local.identifier.pmid36080854-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85137585464.pdf4,02 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.