Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118069
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKhalyasmaa, A. I.en
dc.contributor.authorMatrenin, P. V.en
dc.contributor.authorEroshenko, S. A.en
dc.contributor.authorManusov, V. Z.en
dc.contributor.authorBramm, A. M.en
dc.contributor.authorRomanov, A. M.en
dc.date.accessioned2022-10-19T05:21:24Z-
dc.date.available2022-10-19T05:21:24Z-
dc.date.issued2022-
dc.identifier.citationData Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics / A. I. Khalyasmaa, P. V. Matrenin, S. A. Eroshenko et al. // Mathematics. — 2022. — Vol. 10. — Iss. 14. — 2486.en
dc.identifier.issn22277390-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85136936305&doi=10.3390%2fmath10142486&partnerID=40&md5=5bba7044e01add719181aeb6a3895fb7link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/118069-
dc.description.abstractThis manuscript addresses the problem of technical state assessment of power transformers based on data preprocessing and machine learning. The initial dataset contains diagnostics results of the power transformers, which were collected from a variety of different data sources. It leads to dramatic degradation of the quality of the initial dataset, due to a substantial number of missing values. The problems of such real-life datasets are considered together with the performed efforts to find a balance between data quality and quantity. A data preprocessing method is proposed as a two-iteration data mining technology with simultaneous visualization of objects’ observability in a form of an image of the dataset represented by a data area diagram. The visualization improves the decision-making quality in the course of the data preprocessing procedure. On the dataset collected by the authors, the two-iteration data preprocessing technology increased the dataset filling degree from 75% to 94%, thus the number of gaps that had to be filled in with the synthetic values was reduced by 2.5 times. The processed dataset was used to build machine-learning models for power transformers’ technical state classification. A comparative analysis of different machine learning models was carried out. The outperforming efficiency of ensembles of decision trees was validated for the fleet of high-voltage power equipment taken under consideration. The resulting classification-quality metric, namely, F1-score, was estimated to be 83%. © 2022 by the authors.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnaukaen
dc.description.sponsorshipThe research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMathematicsen
dc.subjectDATA PREPROCESSINGen
dc.subjectEQUIPMENT TECHNICAL STATEen
dc.subjectFEATURE ENGINEERINGen
dc.subjectIDENTIFICATION OF TECHNICAL CONDITIONen
dc.subjectMACHINE LEARNING APPLICATIONSen
dc.subjectPOWER TRANSFORMERen
dc.titleData Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnosticsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math10142486-
dc.identifier.scopus85136936305-
local.contributor.employeeKhalyasmaa, A.I., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation, Power Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeMatrenin, P.V., Industrial Power Supply Systems Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeEroshenko, S.A., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation, Power Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeManusov, V.Z., Industrial Power Supply Systems Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federationen
local.contributor.employeeBramm, A.M., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeRomanov, A.M., Institute of Artificial Intelligence, MIREA-Russian Technological University, Moscow, 119454, Russian Federationen
local.issue14-
local.volume10-
dc.identifier.wos000833110400001-
local.contributor.departmentUral Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentPower Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federationen
local.contributor.departmentIndustrial Power Supply Systems Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federationen
local.contributor.departmentInstitute of Artificial Intelligence, MIREA-Russian Technological University, Moscow, 119454, Russian Federationen
local.identifier.pure30720872-
local.description.order2486-
local.identifier.eid2-s2.0-85136936305-
local.identifier.wosWOS:000833110400001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85136936305.pdf7,38 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.