Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/118069
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Khalyasmaa, A. I. | en |
dc.contributor.author | Matrenin, P. V. | en |
dc.contributor.author | Eroshenko, S. A. | en |
dc.contributor.author | Manusov, V. Z. | en |
dc.contributor.author | Bramm, A. M. | en |
dc.contributor.author | Romanov, A. M. | en |
dc.date.accessioned | 2022-10-19T05:21:24Z | - |
dc.date.available | 2022-10-19T05:21:24Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics / A. I. Khalyasmaa, P. V. Matrenin, S. A. Eroshenko et al. // Mathematics. — 2022. — Vol. 10. — Iss. 14. — 2486. | en |
dc.identifier.issn | 22277390 | - |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85136936305&doi=10.3390%2fmath10142486&partnerID=40&md5=5bba7044e01add719181aeb6a3895fb7 | link |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/118069 | - |
dc.description.abstract | This manuscript addresses the problem of technical state assessment of power transformers based on data preprocessing and machine learning. The initial dataset contains diagnostics results of the power transformers, which were collected from a variety of different data sources. It leads to dramatic degradation of the quality of the initial dataset, due to a substantial number of missing values. The problems of such real-life datasets are considered together with the performed efforts to find a balance between data quality and quantity. A data preprocessing method is proposed as a two-iteration data mining technology with simultaneous visualization of objects’ observability in a form of an image of the dataset represented by a data area diagram. The visualization improves the decision-making quality in the course of the data preprocessing procedure. On the dataset collected by the authors, the two-iteration data preprocessing technology increased the dataset filling degree from 75% to 94%, thus the number of gaps that had to be filled in with the synthetic values was reduced by 2.5 times. The processed dataset was used to build machine-learning models for power transformers’ technical state classification. A comparative analysis of different machine learning models was carried out. The outperforming efficiency of ensembles of decision trees was validated for the fleet of high-voltage power equipment taken under consideration. The resulting classification-quality metric, namely, F1-score, was estimated to be 83%. © 2022 by the authors. | en |
dc.description.sponsorship | Ministry of Education and Science of the Russian Federation, Minobrnauka | en |
dc.description.sponsorship | The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Mathematics | en |
dc.subject | DATA PREPROCESSING | en |
dc.subject | EQUIPMENT TECHNICAL STATE | en |
dc.subject | FEATURE ENGINEERING | en |
dc.subject | IDENTIFICATION OF TECHNICAL CONDITION | en |
dc.subject | MACHINE LEARNING APPLICATIONS | en |
dc.subject | POWER TRANSFORMER | en |
dc.title | Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/math10142486 | - |
dc.identifier.scopus | 85136936305 | - |
local.contributor.employee | Khalyasmaa, A.I., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation, Power Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | en |
local.contributor.employee | Matrenin, P.V., Industrial Power Supply Systems Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | en |
local.contributor.employee | Eroshenko, S.A., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation, Power Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | en |
local.contributor.employee | Manusov, V.Z., Industrial Power Supply Systems Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | en |
local.contributor.employee | Bramm, A.M., Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Romanov, A.M., Institute of Artificial Intelligence, MIREA-Russian Technological University, Moscow, 119454, Russian Federation | en |
local.issue | 14 | - |
local.volume | 10 | - |
dc.identifier.wos | 000833110400001 | - |
local.contributor.department | Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Power Plants Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | en |
local.contributor.department | Industrial Power Supply Systems Department, Novosibirsk State Technical University, Novosibirsk, 630073, Russian Federation | en |
local.contributor.department | Institute of Artificial Intelligence, MIREA-Russian Technological University, Moscow, 119454, Russian Federation | en |
local.identifier.pure | 30720872 | - |
local.description.order | 2486 | - |
local.identifier.eid | 2-s2.0-85136936305 | - |
local.identifier.wos | WOS:000833110400001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85136936305.pdf | 7,38 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.