Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/118063
Title: ФОРМИРОВАНИЕ ПАРАМЕТРОВ ПЕДИАТРИЧЕСКОЙ БАЗЫ ЭЛЕКТРОРЕТИНОГРАММЫ ДЛЯ РАЗРАБОТКИ АЛГОРИТМА ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЯ ВРАЧОМ
Other Titles: FORMATION OF THE PEDIATRIC ELECTRORETINOGRAM DATABASE PARAMETERS FOR THE DEVELOPMENT OF DOCTOR’S DECISION-MAKING ALGORITHM
Authors: Zhdanov, A. E.
Dolganov, A. Yu.
Kazaykin, V. N.
Borisov, V. I.
Ponomarev, V. O.
Dorosinsky, L. G.
Lizunov, A. V.
Luchian, E.
Bao, X.
Issue Date: 2022
Publisher: Scientific Centre for Family Health and Human Reproduction Problems
Citation: FORMATION OF THE PEDIATRIC ELECTRORETINOGRAM DATABASE PARAMETERS FOR THE DEVELOPMENT OF DOCTOR’S DECISION-MAKING ALGORITHM [ФОРМИРОВАНИЕ ПАРАМЕТРОВ ПЕДИАТРИЧЕСКОЙ БАЗЫ ЭЛЕКТРОРЕТИНОГРАММЫ ДЛЯ РАЗРАБОТКИ АЛГОРИТМА ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЯ ВРАЧОМ] / A. E. Zhdanov, A. Yu. Dolganov, V. N. Kazaykin et al. // Acta Biomedica Scientifica. — 2022. — Vol. 7. — Iss. 2. — P. 190-198.
Abstract: Electroretinography is a non-invasive electrophysiological method standardized by the International Society for Clinical Electrophysiology of Vision (ISCEV). Electroretinography has been used for the clinical application and standardization of electrophysiological protocols for diagnosing the retina since 1989. Electroretinography becomefundamentalophthalmologicalresearchmethodthatmayassessesthestate oftheretina. Totransferclinicalpracticeto patientstheestablishmentofstandardized protocols is an important step. It is important for monitoring successful molecular therapy in retinaldegeneration. Retinitis pigmentosa or achromatopsia and, consequently, affected cones or rods photoreceptors is corresponded to complete absent ofelectricalresponse. Thus, detection ofeven modestimprovements after therapeutic treatment is required. Standardized protocols allow the implementation of electroretinography under conditions of optimization of sensitivity and specificity during clinical trials. It should be noted that the literature on retinal diseases demonstrates clinical cases in which patients may have several retinal diseases at the same time. In such cases, it is necessary to detect a group of characteristics of electrophysiological signals withhigh accuracy to improve the application ofvarious diagnostic solutions. The classification of electroretinogram signals depends on the quality of labeled biomedical information or databases, in addition to this, the accuracy of the classification results obtained depends not only on computer technology, but also on the quality of the input data. To date, the analysis of electroretinogram signals is realized manually and largely depends on the experience of clinicians. The development of automated algorithms for analyzing electroretinogram signals may simplify routine processes and improve the quality of diagnosing eye diseases. This article describes the formation ofthe parameters of pediatric electroretinogram database parameters for the development of doctor’s decision-making algorithm. The signal parameters were obtainedby extracting the parameters from the wavelet scalogram of the electroretinogram signal using digital image processing and machine learning methods. © 2022 Scientific Research Institute — Ochapovsky Clinical Regional Hospital no. 1. All Rights Reserved.
Keywords: DECISION TREE
ELECTRO PHYSIOLOGICAL STUDY
ELECTRORETINOGRAM
ELECTRORETINOGRAPHY
EPS
ERG
MACHINE LEARNING
WAVELET ANALYSIS
WAVELET SCALOGRAM
URI: http://hdl.handle.net/10995/118063
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85136714344
ISSN: 25419420
DOI: 10.29413/ABS.2022-7.2.20
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85136714344.pdf892,97 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.