Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117998
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKabus, D.en
dc.contributor.authorArno, L.en
dc.contributor.authorLeenknegt, L.en
dc.contributor.authorPanfilov, A. V.en
dc.contributor.authorDierckx, H.en
dc.date.accessioned2022-10-19T05:21:02Z-
dc.date.available2022-10-19T05:21:02Z-
dc.date.issued2022-
dc.identifier.citationNumerical methods for the detection of phase defect structures in excitable media / D. Kabus, L. Arno, L. Leenknegt et al. // PLoS ONE. — 2022. — Vol. 17. — Iss. 7 July. — e0271351.en
dc.identifier.issn19326203-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85134427093&doi=10.1371%2fjournal.pone.0271351&partnerID=40&md5=564b169107ff7cfbd280ea024860924dlink
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117998-
dc.description.abstractElectrical waves that rotate in the heart organize dangerous cardiac arrhythmias. Finding the region around which such rotation occurs is one of the most important practical questions for arrhythmia management. For many years, the main method for finding such regions was so-called phase mapping, in which a continuous phase was assigned to points in the heart based on their excitation status and defining the rotation region as a point of phase singularity. Recent analysis, however, showed that in many rotation regimes there exist phase discontinuities and the region of rotation must be defined not as a point of phase singularity, but as a phase defect line. In this paper, we use this novel methodology and perform a comparative study of three different phase definitions applied to in silico data and to experimental data obtained from optical voltage mapping experiments on monolayers of human atrial myocytes. We introduce new phase defect detection algorithms and compare them with those that appeared in literature already. We find that the phase definition is more important than the algorithm to identify sudden spatial phase variations. Sharp phase defect lines can be obtained from a phase derived from local activation times observed during one cycle of arrhythmia. Alternatively, similar quality can be obtained from a reparameterization of the classical phase obtained from observation of a single timeframe of transmembrane potential. We found that the phase defect line length was (35.9 ± 6.2)mm in the Fenton-Karma model and (4.01 ± 0.55)mm in cardiac human atrial myocyte monolayers. As local activation times are obtained during standard clinical cardiac mapping, the methods are also suitable to be applied to clinical datasets. All studied methods are publicly available and can be downloaded from an institutional web-server. © 2022 Kabus et al. access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en
dc.description.sponsorshipFonds Wetenschappelijk Onderzoek, FWO: 1177022N, G025820N; Ministry of Education and Science of the Russian Federation, Minobrnauka: 075-15-2020-926; KU Leuven: GPUL/20/012en
dc.description.sponsorshipDK is supported by KU Leuven grant GPUL/20/012. LA was funded by a KU Leuven FLOF grant and a FWO-Flanders fellowship, grant 1177022N; LL was funded by KU Leuven and FWO-Flanders, grant G025820N. Research at Sechenov University was financed by The Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers "Digital biodesign and personalized healthcare" 075-15-2020-926. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to Sven O. Dekker, Niels Harlaar, Daniël A. Pijnappels and Antoine A.F. de Vries for providing optical voltage mapping data of cardiomyogenically differentiated hiAM monolayers. Moreover, we thank Tim De Coster for helpful comments on the analogy between a PDL and the spiral wave tip trajectory.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherPublic Library of Scienceen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePLoS ONEen
dc.subjectALGORITHMen
dc.subjectCARDIAC MUSCLE CELLen
dc.subjectHEART ARRHYTHMIAen
dc.subjectHEART ATRIUMen
dc.subjectHUMANen
dc.subjectPERICARDIUMen
dc.subjectALGORITHMSen
dc.subjectARRHYTHMIAS, CARDIACen
dc.subjectHEART ATRIAen
dc.subjectHUMANSen
dc.subjectMYOCYTES, CARDIACen
dc.subjectPERICARDIUMen
dc.titleNumerical methods for the detection of phase defect structures in excitable mediaen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1371/journal.pone.0271351-
dc.identifier.scopus85134427093-
local.contributor.employeeKabus, D., Department of Mathematics, KU Leuven Campus Kortrijk (KULAK), Kortrijk, Belgium, Laboratory of Experimental Cardiology, Leiden University Medical Center (LUMC), Leiden, Netherlands, iSi Health, Institute of Physics-based Modeling for In Silico Health, KU Leuven, Leuven, Belgiumen
local.contributor.employeeArno, L., Department of Mathematics, KU Leuven Campus Kortrijk (KULAK), Kortrijk, Belgium, iSi Health, Institute of Physics-based Modeling for In Silico Health, KU Leuven, Leuven, Belgiumen
local.contributor.employeeLeenknegt, L., Department of Mathematics, KU Leuven Campus Kortrijk (KULAK), Kortrijk, Belgium, iSi Health, Institute of Physics-based Modeling for In Silico Health, KU Leuven, Leuven, Belgiumen
local.contributor.employeePanfilov, A.V., Department of Physics and Astronomy, Ghent University, Ghent, Belgium, Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russian Federation, World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, Moscow, Russian Federationen
local.contributor.employeeDierckx, H., Department of Mathematics, KU Leuven Campus Kortrijk (KULAK), Kortrijk, Belgium, iSi Health, Institute of Physics-based Modeling for In Silico Health, KU Leuven, Leuven, Belgiumen
local.issue7 July-
local.volume17-
dc.identifier.wos001059258800030-
local.contributor.departmentDepartment of Mathematics, KU Leuven Campus Kortrijk (KULAK), Kortrijk, Belgiumen
local.contributor.departmentLaboratory of Experimental Cardiology, Leiden University Medical Center (LUMC), Leiden, Netherlandsen
local.contributor.departmentiSi Health, Institute of Physics-based Modeling for In Silico Health, KU Leuven, Leuven, Belgiumen
local.contributor.departmentDepartment of Physics and Astronomy, Ghent University, Ghent, Belgiumen
local.contributor.departmentLaboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.departmentWorld-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, Moscow, Russian Federationen
local.identifier.pure30628331-
local.description.ordere0271351-
local.identifier.eid2-s2.0-85134427093-
local.identifier.wosWOS:001059258800030-
local.identifier.pmid35819963-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85134427093.pdf5,68 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.