Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/117951
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTyulkova, T.en
dc.contributor.authorChernavin, P.en
dc.contributor.authorChernavin, N.en
dc.contributor.authorChugaev, Y.en
dc.contributor.authorChernyaev, I.en
dc.date.accessioned2022-10-19T05:20:40Z-
dc.date.available2022-10-19T05:20:40Z-
dc.date.issued2022-
dc.identifier.citationSubstantive Interpretation of Machine Learning Solutions by the Example of Determining the Activity of the Tuberculosis Process in Individuals with Minimal Tuberculosis Residual Changes / T. Tyulkova, P. Chernavin, N. Chernavin et al. // Studies in Health Technology and Informatics. — 2022. — Vol. 295. — P. 152-156.en
dc.identifier.isbn9781643682907-
dc.identifier.issn9269630-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85133252814&doi=10.3233%2fSHTI220684&partnerID=40&md5=3a8eaa726a433a8d6186cd8a217faa7clink
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117951-
dc.description.abstractIn this article is described an application of various machine learning (ML) methods to obtain decision rules and its interpretation to a problem of recognition of activity of the tuberculosis process. The research data base included 489 patients registered in anti-tuberculosis institutions in Tyumen and Yekaterinburg. The conducted modeling by machine learning methods allowed to highlight 7 most informative features (the presence of calcifications, age, the content of leukocytes, hemoglobin, eosinophils, α2-fraction of globulins, γ-fraction of globulins) together with classification accuracy of 95% for both active and inactive patients. The research result may be interesting for medical specialists, data scientists and to all those interested in problems at the intersection of medicine and machine learning. © 2022 The authors and IOS Press.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherIOS Press BVen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceStudies in Health Technology and Informaticsen
dc.subjectCOMMITTEE MACHINEen
dc.subjectMACHINE LEARNINGen
dc.subjectTUBERCULOSISen
dc.subjectMACHINE LEARNINGen
dc.subjectMEDICAL PROBLEMSen
dc.subjectTUBES (COMPONENTS)en
dc.subjectCLASSIFICATION ACCURACYen
dc.subjectCOMMITTEE MACHINESen
dc.subjectDATA BASEen
dc.subjectDECISION RULESen
dc.subjectHAEMOGLOBINSen
dc.subjectLEUCOCYTESen
dc.subjectMACHINE LEARNING METHODSen
dc.subjectMACHINE-LEARNINGen
dc.subjectRESEARCH DATAen
dc.subjectTUBERCULOSISen
dc.subjectBIOMINERALIZATIONen
dc.subjectHUMANen
dc.subjectMACHINE LEARNINGen
dc.subjectTUBERCULOSISen
dc.subjectHUMANSen
dc.subjectMACHINE LEARNINGen
dc.subjectTUBERCULOSISen
dc.titleSubstantive Interpretation of Machine Learning Solutions by the Example of Determining the Activity of the Tuberculosis Process in Individuals with Minimal Tuberculosis Residual Changesen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3233/SHTI220684-
dc.identifier.scopus85133252814-
local.contributor.employeeTyulkova, T., Ural Scientific Research Institute of Phthisiopulmonology (USRIPh), Br. of the Natl. Med. Res. Ctr. of Phthisiopulmonology and Infection Diseases of Russian Federation, Ekaterinburg, Russian Federationen
local.contributor.employeeChernavin, P., Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeChernavin, N., Ural Federal University, Ekaterinburg, Russian Federationen
local.contributor.employeeChugaev, Y., Ural State Medical University, Ekaterinburg, Russian Federationen
local.contributor.employeeChernyaev, I., Ural State Medical University, Ekaterinburg, Russian Federationen
local.description.firstpage152-
local.description.lastpage156-
local.volume295-
local.contributor.departmentUral Scientific Research Institute of Phthisiopulmonology (USRIPh), Br. of the Natl. Med. Res. Ctr. of Phthisiopulmonology and Infection Diseases of Russian Federation, Ekaterinburg, Russian Federationen
local.contributor.departmentUral Federal University, Ekaterinburg, Russian Federationen
local.contributor.departmentUral State Medical University, Ekaterinburg, Russian Federationen
local.identifier.pure30538411-
local.identifier.eid2-s2.0-85133252814-
local.identifier.pmid35773830-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85133252814.pdf160,87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.