Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/117951
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tyulkova, T. | en |
dc.contributor.author | Chernavin, P. | en |
dc.contributor.author | Chernavin, N. | en |
dc.contributor.author | Chugaev, Y. | en |
dc.contributor.author | Chernyaev, I. | en |
dc.date.accessioned | 2022-10-19T05:20:40Z | - |
dc.date.available | 2022-10-19T05:20:40Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Substantive Interpretation of Machine Learning Solutions by the Example of Determining the Activity of the Tuberculosis Process in Individuals with Minimal Tuberculosis Residual Changes / T. Tyulkova, P. Chernavin, N. Chernavin et al. // Studies in Health Technology and Informatics. — 2022. — Vol. 295. — P. 152-156. | en |
dc.identifier.isbn | 9781643682907 | - |
dc.identifier.issn | 9269630 | - |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133252814&doi=10.3233%2fSHTI220684&partnerID=40&md5=3a8eaa726a433a8d6186cd8a217faa7c | link |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/117951 | - |
dc.description.abstract | In this article is described an application of various machine learning (ML) methods to obtain decision rules and its interpretation to a problem of recognition of activity of the tuberculosis process. The research data base included 489 patients registered in anti-tuberculosis institutions in Tyumen and Yekaterinburg. The conducted modeling by machine learning methods allowed to highlight 7 most informative features (the presence of calcifications, age, the content of leukocytes, hemoglobin, eosinophils, α2-fraction of globulins, γ-fraction of globulins) together with classification accuracy of 95% for both active and inactive patients. The research result may be interesting for medical specialists, data scientists and to all those interested in problems at the intersection of medicine and machine learning. © 2022 The authors and IOS Press. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | IOS Press BV | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Studies in Health Technology and Informatics | en |
dc.subject | COMMITTEE MACHINE | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | TUBERCULOSIS | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | MEDICAL PROBLEMS | en |
dc.subject | TUBES (COMPONENTS) | en |
dc.subject | CLASSIFICATION ACCURACY | en |
dc.subject | COMMITTEE MACHINES | en |
dc.subject | DATA BASE | en |
dc.subject | DECISION RULES | en |
dc.subject | HAEMOGLOBINS | en |
dc.subject | LEUCOCYTES | en |
dc.subject | MACHINE LEARNING METHODS | en |
dc.subject | MACHINE-LEARNING | en |
dc.subject | RESEARCH DATA | en |
dc.subject | TUBERCULOSIS | en |
dc.subject | BIOMINERALIZATION | en |
dc.subject | HUMAN | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | TUBERCULOSIS | en |
dc.subject | HUMANS | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | TUBERCULOSIS | en |
dc.title | Substantive Interpretation of Machine Learning Solutions by the Example of Determining the Activity of the Tuberculosis Process in Individuals with Minimal Tuberculosis Residual Changes | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3233/SHTI220684 | - |
dc.identifier.scopus | 85133252814 | - |
local.contributor.employee | Tyulkova, T., Ural Scientific Research Institute of Phthisiopulmonology (USRIPh), Br. of the Natl. Med. Res. Ctr. of Phthisiopulmonology and Infection Diseases of Russian Federation, Ekaterinburg, Russian Federation | en |
local.contributor.employee | Chernavin, P., Ural Federal University, Ekaterinburg, Russian Federation | en |
local.contributor.employee | Chernavin, N., Ural Federal University, Ekaterinburg, Russian Federation | en |
local.contributor.employee | Chugaev, Y., Ural State Medical University, Ekaterinburg, Russian Federation | en |
local.contributor.employee | Chernyaev, I., Ural State Medical University, Ekaterinburg, Russian Federation | en |
local.description.firstpage | 152 | - |
local.description.lastpage | 156 | - |
local.volume | 295 | - |
local.contributor.department | Ural Scientific Research Institute of Phthisiopulmonology (USRIPh), Br. of the Natl. Med. Res. Ctr. of Phthisiopulmonology and Infection Diseases of Russian Federation, Ekaterinburg, Russian Federation | en |
local.contributor.department | Ural Federal University, Ekaterinburg, Russian Federation | en |
local.contributor.department | Ural State Medical University, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 30538411 | - |
local.identifier.eid | 2-s2.0-85133252814 | - |
local.identifier.pmid | 35773830 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85133252814.pdf | 160,87 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.