Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117928
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMuechler, L.en
dc.contributor.authorBadrtdinov, D. I.en
dc.contributor.authorHampel, A.en
dc.contributor.authorCano, J.en
dc.contributor.authorRösner, M.en
dc.contributor.authorDreyer, C. E.en
dc.date.accessioned2022-10-19T05:20:29Z-
dc.date.available2022-10-19T05:20:29Z-
dc.date.issued2022-
dc.identifier.citationQuantum embedding methods for correlated excited states of point defects: Case studies and challenges / L. Muechler, D. I. Badrtdinov, A. Hampel et al. // Physical Review B. — 2022. — Vol. 105. — Iss. 23. — 235104.en
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85132338522&doi=10.1103%2fPhysRevB.105.235104&partnerID=40&md5=54528bf72734ffccb0679f81e8f56088link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117928-
dc.description.abstractA quantitative description of the excited electronic states of point defects and impurities is crucial for understanding materials properties, and possible applications of defects in quantum technologies. This is a considerable challenge for computational methods, since Kohn-Sham density functional theory (DFT) is inherently a ground-state theory, while higher-level methods are often too computationally expensive for defect systems. Recently, embedding approaches have been applied that treat defect states with many-body methods, while using DFT to describe the bulk host material. We implement such an embedding method, based on Wannierization of defect orbitals and the constrained random-phase approximation approach, and perform systematic characterization of the method for three distinct systems with current technological relevance: a carbon dimer replacing a B and N pair in bulk hexagonal BN (CBCN), the negatively charged nitrogen-vacancy center in diamond (NV-), and an Fe impurity on the Al site in wurtzite AlN (FeAl). In the context of these test-case defects, we demonstrate that crucial considerations of the methodology include convergence of the bulk screening of the active-space Coulomb interaction, the choice of exchange-correlation functional for the initial DFT calculation, and the treatment of the "double-counting"correction. For CBCN we show that the embedding approach gives many-body states in agreement with analytical results on the Hubbard dimer model, which allows us to elucidate the effects of the DFT functional and double-counting correction. For the NV- center, our method demonstrates good quantitative agreement with experiments for the zero-phonon line of the triplet-triplet transition. Finally, we illustrate challenges associated with this method for determining the energies and orderings of the complex spin multiplets in FeAl. © 2022 American Physical Society.en
dc.description.sponsorshipNational Science Foundation, NSF: DMR-1918455; Council on grants of the President of the Russian Federation: SP-2488.2021.1en
dc.description.sponsorshipC.E.D. thanks A. Alkauskas, D. Wickramaratne, M. Zingl, A. Gali, M. Turiansky, T. Berkelbach, and A. Millis for fruitful conversations and comments on the manuscript. The Flatiron Institute is a division of the Simons Foundation. C.E.D. acknowledges support from the National Science Foundation under Grant No. DMR-1918455. The work of D.I.B. was supported by the grant of the President of the Russian Federation, Project No. SP-2488.2021.1.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhysical Review Ben
dc.subjectALUMINUM NITRIDEen
dc.subjectAPPROXIMATION ALGORITHMSen
dc.subjectCOMPUTATION THEORYen
dc.subjectDESIGN FOR TESTABILITYen
dc.subjectFREE ENERGYen
dc.subjectGROUND STATEen
dc.subjectIII-V SEMICONDUCTORSen
dc.subjectIMPURITIESen
dc.subjectMATERIALS PROPERTIESen
dc.subjectPOINT DEFECTSen
dc.subjectQUANTUM THEORYen
dc.subjectZINC SULFIDEen
dc.subjectCASE-STUDIESen
dc.subjectDEFECT AND IMPURITIESen
dc.subjectDENSITY-FUNCTIONAL-THEORYen
dc.subjectDOUBLE COUNTINGen
dc.subjectEMBEDDING METHODen
dc.subjectEMBEDDINGSen
dc.subjectEXCITED ELECTRONIC STATEen
dc.subjectEXCITED-STATESen
dc.subjectQUANTITATIVE DESCRIPTIONen
dc.subjectQUANTUM TECHNOLOGIESen
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.titleQuantum embedding methods for correlated excited states of point defects: Case studies and challengesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1103/PhysRevB.105.235104-
dc.identifier.scopus85132338522-
local.contributor.employeeMuechler, L., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United Statesen
local.contributor.employeeBadrtdinov, D.I., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.employeeHampel, A., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United Statesen
local.contributor.employeeCano, J., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United Statesen
local.contributor.employeeRösner, M., Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, Nijmegen, 6525 AJ, Netherlandsen
local.contributor.employeeDreyer, C.E., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United Statesen
local.issue23-
local.volume105-
dc.identifier.wos000823036500004-
local.contributor.departmentCenter for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United Statesen
local.contributor.departmentTheoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United Statesen
local.contributor.departmentInstitute for Molecules and Materials, Radboud University, Heijendaalseweg 135, Nijmegen, 6525 AJ, Netherlandsen
local.identifier.pure30539378-
local.description.order235104-
local.identifier.eid2-s2.0-85132338522-
local.identifier.wosWOS:000823036500004-
local.identifier.pmid24699950-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85132338522.pdf3,46 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.