Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/117928
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Muechler, L. | en |
dc.contributor.author | Badrtdinov, D. I. | en |
dc.contributor.author | Hampel, A. | en |
dc.contributor.author | Cano, J. | en |
dc.contributor.author | Rösner, M. | en |
dc.contributor.author | Dreyer, C. E. | en |
dc.date.accessioned | 2022-10-19T05:20:29Z | - |
dc.date.available | 2022-10-19T05:20:29Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Quantum embedding methods for correlated excited states of point defects: Case studies and challenges / L. Muechler, D. I. Badrtdinov, A. Hampel et al. // Physical Review B. — 2022. — Vol. 105. — Iss. 23. — 235104. | en |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132338522&doi=10.1103%2fPhysRevB.105.235104&partnerID=40&md5=54528bf72734ffccb0679f81e8f56088 | link |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/117928 | - |
dc.description.abstract | A quantitative description of the excited electronic states of point defects and impurities is crucial for understanding materials properties, and possible applications of defects in quantum technologies. This is a considerable challenge for computational methods, since Kohn-Sham density functional theory (DFT) is inherently a ground-state theory, while higher-level methods are often too computationally expensive for defect systems. Recently, embedding approaches have been applied that treat defect states with many-body methods, while using DFT to describe the bulk host material. We implement such an embedding method, based on Wannierization of defect orbitals and the constrained random-phase approximation approach, and perform systematic characterization of the method for three distinct systems with current technological relevance: a carbon dimer replacing a B and N pair in bulk hexagonal BN (CBCN), the negatively charged nitrogen-vacancy center in diamond (NV-), and an Fe impurity on the Al site in wurtzite AlN (FeAl). In the context of these test-case defects, we demonstrate that crucial considerations of the methodology include convergence of the bulk screening of the active-space Coulomb interaction, the choice of exchange-correlation functional for the initial DFT calculation, and the treatment of the "double-counting"correction. For CBCN we show that the embedding approach gives many-body states in agreement with analytical results on the Hubbard dimer model, which allows us to elucidate the effects of the DFT functional and double-counting correction. For the NV- center, our method demonstrates good quantitative agreement with experiments for the zero-phonon line of the triplet-triplet transition. Finally, we illustrate challenges associated with this method for determining the energies and orderings of the complex spin multiplets in FeAl. © 2022 American Physical Society. | en |
dc.description.sponsorship | National Science Foundation, NSF: DMR-1918455; Council on grants of the President of the Russian Federation: SP-2488.2021.1 | en |
dc.description.sponsorship | C.E.D. thanks A. Alkauskas, D. Wickramaratne, M. Zingl, A. Gali, M. Turiansky, T. Berkelbach, and A. Millis for fruitful conversations and comments on the manuscript. The Flatiron Institute is a division of the Simons Foundation. C.E.D. acknowledges support from the National Science Foundation under Grant No. DMR-1918455. The work of D.I.B. was supported by the grant of the President of the Russian Federation, Project No. SP-2488.2021.1. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Physical Review B | en |
dc.subject | ALUMINUM NITRIDE | en |
dc.subject | APPROXIMATION ALGORITHMS | en |
dc.subject | COMPUTATION THEORY | en |
dc.subject | DESIGN FOR TESTABILITY | en |
dc.subject | FREE ENERGY | en |
dc.subject | GROUND STATE | en |
dc.subject | III-V SEMICONDUCTORS | en |
dc.subject | IMPURITIES | en |
dc.subject | MATERIALS PROPERTIES | en |
dc.subject | POINT DEFECTS | en |
dc.subject | QUANTUM THEORY | en |
dc.subject | ZINC SULFIDE | en |
dc.subject | CASE-STUDIES | en |
dc.subject | DEFECT AND IMPURITIES | en |
dc.subject | DENSITY-FUNCTIONAL-THEORY | en |
dc.subject | DOUBLE COUNTING | en |
dc.subject | EMBEDDING METHOD | en |
dc.subject | EMBEDDINGS | en |
dc.subject | EXCITED ELECTRONIC STATE | en |
dc.subject | EXCITED-STATES | en |
dc.subject | QUANTITATIVE DESCRIPTION | en |
dc.subject | QUANTUM TECHNOLOGIES | en |
dc.subject | DENSITY FUNCTIONAL THEORY | en |
dc.title | Quantum embedding methods for correlated excited states of point defects: Case studies and challenges | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1103/PhysRevB.105.235104 | - |
dc.identifier.scopus | 85132338522 | - |
local.contributor.employee | Muechler, L., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States | en |
local.contributor.employee | Badrtdinov, D.I., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.employee | Hampel, A., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States | en |
local.contributor.employee | Cano, J., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United States | en |
local.contributor.employee | Rösner, M., Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, Nijmegen, 6525 AJ, Netherlands | en |
local.contributor.employee | Dreyer, C.E., Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United States | en |
local.issue | 23 | - |
local.volume | 105 | - |
dc.identifier.wos | 000823036500004 | - |
local.contributor.department | Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, United States | en |
local.contributor.department | Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation | en |
local.contributor.department | Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United States | en |
local.contributor.department | Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, Nijmegen, 6525 AJ, Netherlands | en |
local.identifier.pure | 30539378 | - |
local.description.order | 235104 | - |
local.identifier.eid | 2-s2.0-85132338522 | - |
local.identifier.wos | WOS:000823036500004 | - |
local.identifier.pmid | 24699950 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85132338522.pdf | 3,46 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.