Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117923
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKurlyandskaya, G. V.en
dc.contributor.authorLezama, L.en
dc.contributor.authorPasynkova, A. A.en
dc.contributor.authorVolchkov, S. O.en
dc.contributor.authorLukshina, V. A.en
dc.contributor.authorLarrañaga, A.en
dc.contributor.authorDmitrieva, N. V.en
dc.contributor.authorTimofeeva, A. V.en
dc.contributor.authorOrue, I.en
dc.date.accessioned2022-10-19T05:20:27Z-
dc.date.available2022-10-19T05:20:27Z-
dc.date.issued2022-
dc.identifier.citationAmorphous FeCoCrSiB Ribbons with Tailored Anisotropy for the Development of Magnetic Elements for High Frequency Applications / G. V. Kurlyandskaya, L. Lezama, A. A. Pasynkova et al. // Materials. — 2022. — Vol. 15. — Iss. 12. — 4160.en
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85132246090&doi=10.3390%2fma15124160&partnerID=40&md5=76d9d5122bb83b79251d0f96ca085fa6link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117923-
dc.description.abstractThe ferromagnetic resonance (FMR) in the frequency range of 0.5 to 12.5 GHz has been investigated as a function of external magnetic field for rapidly quenched Fe3Co67Cr3Si15B12 amorphous ribbons with different features of the effective magnetic anisotropy. Three states of the ribbons were considered: as-quenched without any treatment; after relaxation annealing without stress at the temperature of 350 °C during 1 h; and after annealing under specific stress of 230 MPa at the temperature of 350 °C during 1 h. For FMR measurements, we adapted a technique previously proposed and tested for the case of microwires. Here, amorphous ribbons were studied using the sample holder based on a commercial SMA connector. On the basis of the measurements of the reflection coefficient S11, the total impedance including its real and imaginary components was determined to be in the frequency range of 0.5 to 12.5 GHz. In order to confirm the validity of the proposed technique, FMR was also measured by the certified cavity perturbation technique using a commercial Bruker spectrometer operating at X-band frequency of 9.39 GHz. As part of the characterization of the ribbons used for microwave measurements, comparative analysis was performed of X-ray diffraction, optical microscopy, transmission electron microscopy, inductive magnetic hysteresis loops, vibrating sample magnetometry, magneto-optical Kerr effect (including magnetic do-mains) and magnetoimpedance data for of all samples. © 2022 by the author. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipMinistry of Education and Science of the Russian Federation, Minobrnauka; Euskal Herriko Unibertsitatea, EHUen
dc.description.sponsorshipFunding: The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged. Further funding from University of the Basque Country UPV/EHU Research Groups Funding (GMMM) is similarly gratefully acknowledged.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMaterialsen
dc.subjectAMORPHOUS RIBBONSen
dc.subjectFERROMAGNETIC RESONANCEen
dc.subjectMAGNETIC ANISOTROPYen
dc.subjectMAGNETIC FIELD SENSORSen
dc.subjectMAGNETIZATION PROCESSen
dc.subjectMAGNETOIMPEDANCEen
dc.subjectMICROWAVE ABSORPTIONen
dc.subjectBORON COMPOUNDSen
dc.subjectCHROMIUM COMPOUNDSen
dc.subjectCOBALT COMPOUNDSen
dc.subjectFERROMAGNETIC MATERIALSen
dc.subjectFERROMAGNETIC RESONANCEen
dc.subjectFERROMAGNETISMen
dc.subjectHIGH RESOLUTION TRANSMISSION ELECTRON MICROSCOPYen
dc.subjectIRON COMPOUNDSen
dc.subjectLIGHT TRANSMISSIONen
dc.subjectMAGNETIC FIELDSen
dc.subjectMAGNETIC SENSORSen
dc.subjectNANOMAGNETICSen
dc.subjectNIOBIUM COMPOUNDSen
dc.subjectOPTICAL KERR EFFECTen
dc.subjectPERTURBATION TECHNIQUESen
dc.subjectSILICON COMPOUNDSen
dc.subjectAMORPHOUS RIBBONen
dc.subjectEXTERNAL MAGNETIC FIELDen
dc.subjectFREQUENCY RANGESen
dc.subjectHIGH-FREQUENCY APPLICATIONSen
dc.subjectMAGNETIC ELEMENTSen
dc.subjectMAGNETIC FIELDS SENSORSen
dc.subjectMAGNETIZATION PROCESSen
dc.subjectMAGNETO-IMPEDANCEen
dc.subjectMAGNETOIMPEDANCEen
dc.subjectMICROWAVE ABSORPTIONen
dc.subjectMAGNETIC ANISOTROPYen
dc.titleAmorphous FeCoCrSiB Ribbons with Tailored Anisotropy for the Development of Magnetic Elements for High Frequency Applicationsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/ma15124160-
dc.identifier.scopus85132246090-
local.contributor.employeeKurlyandskaya, G.V., Department of Electricity and Electronics, Basque Country University (UPV/EHU), Leioa, 48940, Spain, Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeLezama, L., Department ofInorganic Chemistry, Basque Country University (UPV/EHU), Leioa, 48940, Spain, Los Servicios Generales de Investigación (SGIKER), Basque Country University UPV/EHU, Leioa, 48940, Spainen
local.contributor.employeePasynkova, A.A., Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federation, Laboratory of Advanced Magnetic Materials, Institute of Metal Physics UD RAS, Ekaterinburg, 620108, Russian Federationen
local.contributor.employeeVolchkov, S.O., Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeLukshina, V.A., Micromagnetism Laboratory Institute of Metal Physics UD RAS, Ekaterinburg, 620108, Russian Federationen
local.contributor.employeeLarrañaga, A., Los Servicios Generales de Investigación (SGIKER), Basque Country University UPV/EHU, Leioa, 48940, Spainen
local.contributor.employeeDmitrieva, N.V., Micromagnetism Laboratory Institute of Metal Physics UD RAS, Ekaterinburg, 620108, Russian Federationen
local.contributor.employeeTimofeeva, A.V., Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federation, Laboratory of Advanced Magnetic Materials, Institute of Metal Physics UD RAS, Ekaterinburg, 620108, Russian Federationen
local.contributor.employeeOrue, I., Los Servicios Generales de Investigación (SGIKER), Basque Country University UPV/EHU, Leioa, 48940, Spainen
local.issue12-
local.volume15-
dc.identifier.wos000816129700001-
local.contributor.departmentDepartment of Electricity and Electronics, Basque Country University (UPV/EHU), Leioa, 48940, Spainen
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment ofInorganic Chemistry, Basque Country University (UPV/EHU), Leioa, 48940, Spainen
local.contributor.departmentLos Servicios Generales de Investigación (SGIKER), Basque Country University UPV/EHU, Leioa, 48940, Spainen
local.contributor.departmentLaboratory of Advanced Magnetic Materials, Institute of Metal Physics UD RAS, Ekaterinburg, 620108, Russian Federationen
local.contributor.departmentMicromagnetism Laboratory Institute of Metal Physics UD RAS, Ekaterinburg, 620108, Russian Federationen
local.identifier.pure30541685-
local.description.order4160-
local.identifier.eid2-s2.0-85132246090-
local.identifier.wosWOS:000816129700001-
local.identifier.pmid19961944-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85132246090.pdf4,39 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.