Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117838
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShilov, A. O.en
dc.contributor.authorSavchenko, S. S.en
dc.contributor.authorVokhmintsev, A. S.en
dc.contributor.authorGritsenko, V. A.en
dc.contributor.authorWeinstein, I. A.en
dc.date.accessioned2022-10-19T05:19:47Z-
dc.date.available2022-10-19T05:19:47Z-
dc.date.issued2022-
dc.identifier.citationThermal quenching of self-trapped exciton luminescence in nanostructured hafnia / A. O. Shilov, S. S. Savchenko, A. S. Vokhmintsev et al. // Journal of Luminescence. — 2022. — Vol. 247. — 118908.en
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85128578060&doi=10.1016%2fj.jlumin.2022.118908&partnerID=40&md5=e48370b0349fa21fc9012da28f7edcb8link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117838-
dc.description.abstractThe intrinsic optical properties and peculiarities of the energy structure of hafnium dioxide largely determine the prospects for applying the latter in new generation devices of optoelectronics and nanoelectronics. In this work, we have studied the diffuse reflectance spectra at room temperature for a nanostructured powder of nominally pure HfO2 with a monoclinic crystal structure and, as well its photoluminescence in the temperature range of 40–300 K. We have also estimated the bandgap Eg under the assumption made for indirect (5.31 eV) and direct (5.61 eV) allowed transitions. We have detected emission with a 4.2 eV maximum at T < 200 K and conducted an analysis of the experimental dependencies to evaluate the activation energies of thermal quenching (140 meV) and enhancement (3 meV) processes. Accounting for both the temperature behavior of the spectral characteristics and the estimation of the Huang-Rhys factor S » 1 has shown that radiative decay of self-trapped excitons forms the mechanism of the indicated emission. In this case, the localization is mainly due to the interaction of holes with active vibrational modes of oxygen atoms in non-equivalent (O3f and O4f) crystal positions. Thorough study of the discussed excitonic effects can advance development of hafnia-based structures with a controlled optical response. © 2022 Elsevier B.V.en
dc.description.sponsorshipFEUZ-2020-0059en
dc.description.sponsorshipThe work was supported by Minobrnauki research project FEUZ-2020-0059. The authors are grateful to the Shared Access Center “Composition of Compounds” of the IHTE UB RAS, Ekaterinburg for help in XRD and Raman characterization of the hafnia powder.en
dc.description.sponsorshipThe work was supported by Minobrnauki research project FEUZ-2020-0059 . The authors are grateful to the Shared Access Center “Composition of Compounds” of the IHTE UB RAS, Ekaterinburg for help in XRD and Raman characterization of the hafnia powder.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJournal of Luminescenceen
dc.subjectEXCITON-PHONON INTERACTIONen
dc.subjectHUANG-RHYS FACTORen
dc.subjectINDIRECT, AND DIRECT ALLOWED TRANSITIONSen
dc.subjectLUMINESCENCE TEMPERATURE QUENCHINGen
dc.subjectMONOCLINIC HFO2en
dc.subjectSELF-TRAPPED EXCITONen
dc.subjectACTIVATION ANALYSISen
dc.subjectACTIVATION ENERGYen
dc.subjectCRYSTAL STRUCTUREen
dc.subjectEXCITONSen
dc.subjectLUMINESCENCEen
dc.subjectOPTICAL PROPERTIESen
dc.subjectQUENCHINGen
dc.subjectEXCITON-PHONON INTERACTIONSen
dc.subjectHUANG-RHYS FACTORSen
dc.subjectINDIRECT, AND DIRECT ALLOWED TRANSITIONen
dc.subjectLUMINESCENCE TEMPERATURE QUENCHINGen
dc.subjectMONOCLINIC HFO2en
dc.subjectMONOCLINICSen
dc.subjectNANO-STRUCTUREDen
dc.subjectSELF TRAPPED EXCITONSen
dc.subjectSELF-TRAPPED EXCITON LUMINESCENCESen
dc.subjectTHERMAL QUENCHINGen
dc.subjectHAFNIUM OXIDESen
dc.titleThermal quenching of self-trapped exciton luminescence in nanostructured hafniaen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.jlumin.2022.118908-
dc.identifier.scopus85128578060-
local.contributor.employeeShilov, A.O., NANOTECH Centre, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeSavchenko, S.S., NANOTECH Centre, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeVokhmintsev, A.S., NANOTECH Centre, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.employeeGritsenko, V.A., Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Ave., Novosibirsk, 630090, Russian Federationen
local.contributor.employeeWeinstein, I.A., NANOTECH Centre, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federationen
local.volume247-
dc.identifier.wos000860793500005-
local.contributor.departmentNANOTECH Centre, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federationen
local.contributor.departmentRzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Ave., Novosibirsk, 630090, Russian Federationen
local.identifier.pure30097480-
local.description.order118908-
local.identifier.eid2-s2.0-85128578060-
local.identifier.wosWOS:000860793500005-
local.fund.feuzFEUZ-2020-0059-
local.identifier.pmid222313-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85128578060.pdf1,28 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.