Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/117792
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHe, J.en
dc.contributor.authorSimons, M.en
dc.contributor.authorFedoseev, G.en
dc.contributor.authorChuang, K. -J.en
dc.contributor.authorQasim, D.en
dc.contributor.authorLamberts, T.en
dc.contributor.authorIoppolo, S.en
dc.contributor.authorMcguire, B. A.en
dc.contributor.authorCuppen, H.en
dc.contributor.authorLinnartz, H.en
dc.date.accessioned2022-10-19T05:19:24Z-
dc.date.available2022-10-19T05:19:24Z-
dc.date.issued2022-
dc.identifier.citationMethoxymethanol formation starting from CO hydrogenation / J. He, M. Simons, G. Fedoseev et al. // Astronomy and Astrophysics. — 2022. — Vol. 659. — A65.en
dc.identifier.issn46361-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85126762478&doi=10.1051%2f0004-6361%2f202142414&partnerID=40&md5=dfdf3e093a1af822d189ce4fe00bfc85link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/117792-
dc.description.abstractContext. Methoxymethanol (CH3OCH2OH) has been identified through gas-phase signatures in both high- and low-mass star-forming regions. Like several other C-, O-, and H-containing complex organic molecules (COMs), this molecule is expected to form upon hydrogen addition and abstraction reactions in CO-rich ice through radical recombination of CO hydrogenation products. Aims. The goal of this work is to experimentally and theoretically investigate the most likely solid-state methoxymethanol reaction channel athe recombination of CH2OH and CH3O radicals afor dark interstellar cloud conditions and to compare the formation efficiency with that of other species that were shown to form along the CO-hydrogenation line. We also investigate an alternative hydrogenation channel starting from methyl formate. Methods. Hydrogen atoms and CO or H2CO molecules were co-deposited on top of predeposited H2O ice to mimic the conditions associated with the beginning of arapida CO freeze-out. The formation of simple species was monitored in situ using infrared spectroscopy. Quadrupole mass spectrometry was used to analyze the gas-phase COM composition following a temperature-programmed desorption. Monte Carlo simulations were used for an astrochemical model comparing the methoxymethanol formation efficiency with that of other COMs. Results. The laboratory identification of methoxymethanol is found to be challenging, in part because of diagnostic limitations, but possibly also because of low formation efficiencies. Nevertheless, unambiguous detection of newly formed methoxymethanol has been possible in both CO+H and H2CO+H experiments. The resulting abundance of methoxymethanol with respect to CH3OH is about 0.05, which is about six times lower than the value observed toward NGC 6334I and about three times lower than the value reported for IRAS 16293B. Astrochemical simulations predict a similar value for the methoxymethanol abundance with respect to CH3OH, with values ranging between 0.03 and 0.06. Conclusions. We find that methoxymethanol is formed by co-deposition of CO and H2CO with H atoms through the recombination of CH2OH and CH3O radicals. In both the experimental and modeling studies, it is found that the efficiency of this channel alone is not sufficient to explain the observed abundance of methoxymethanol with respect to methanol. The rate of a proposed alternative channel, the direct hydrogenation of methyl formate, is found to be even less efficient. These results suggest that our knowledge of the reaction network is incomplete or involving alternative solid-state or gas-phase formation mechanisms. ©en
dc.description.sponsorshipFEUZ-2020-0038; Horizon 2020 Framework Programme, H2020; Royal Society; European Research Council, ERC; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWOen
dc.description.sponsorshipAcknowledgements. This work has been financially supported through an NWO grant within the framework of the Dutch Astrochemistry Network II. We thank Julie Korsmeyer for her technical assistance. J.H. is involved in research that is supported through the European Research Council under the Horizon 2020 Framework Program via the ERC Advanced Grant Origins 83 24 28. G.F. acknowledges financial support from the Russian Ministry of Science and Higher Education via the State Assignment Contract. FEUZ-2020-0038. S.I. acknowledges support from the Royal Society.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherEDP Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAstronomy and Astrophysicsen
dc.subjectASTROCHEMISTRYen
dc.subjectISM: MOLECULESen
dc.subjectMOLECULAR PROCESSESen
dc.subjectSOLID STATE: VOLATILEen
dc.subjectATOMSen
dc.subjectDEPOSITIONen
dc.subjectEFFICIENCYen
dc.subjectGASESen
dc.subjectINFRARED SPECTROSCOPYen
dc.subjectINTELLIGENT SYSTEMSen
dc.subjectMASS SPECTROMETRYen
dc.subjectMOLECULESen
dc.subjectMONTE CARLO METHODSen
dc.subjectTEMPERATURE PROGRAMMED DESORPTIONen
dc.subjectASTROCHEMISTRYen
dc.subjectCO HYDROGENATIONen
dc.subjectCOMPLEX ORGANIC MOLECULESen
dc.subjectCONDITIONen
dc.subjectGAS-PHASESen
dc.subjectISM:MOLECULESen
dc.subjectMETHYL FORMATEen
dc.subjectMOLECULAR PROCESSen
dc.subjectPHASE SIGNATUREen
dc.subjectSOLID STATE: VOLATILEen
dc.subjectHYDROGENATIONen
dc.titleMethoxymethanol formation starting from CO hydrogenationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1051/0004-6361/202142414-
dc.identifier.scopus85126762478-
local.contributor.employeeHe, J., Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, Netherlands, Max Planck Institute for Astronomy, Königstuhl 17, Heidelberg, 69117, Germanyen
local.contributor.employeeSimons, M., Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlandsen
local.contributor.employeeFedoseev, G., Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, Netherlands, Research Laboratory for Astrochemistry, Ural Federal University, Kuibysheva St. 48, Ekaterinburg, 620026, Russian Federationen
local.contributor.employeeChuang, K.-J., Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, Netherlands, Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, Jena, 07743, Germanyen
local.contributor.employeeQasim, D., Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, Netherlands, Current address: Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United Statesen
local.contributor.employeeLamberts, T., Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, Netherlands, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, Leiden, 2300 RA, Netherlandsen
local.contributor.employeeIoppolo, S., School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdomen
local.contributor.employeeMcguire, B.A., Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States, National Radio Astronomy Observatory, Charlottesville, VA 22903, United States, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, United Statesen
local.contributor.employeeCuppen, H., Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlandsen
local.contributor.employeeLinnartz, H., Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, Netherlandsen
local.volume659-
dc.identifier.wos000765934500001-
local.contributor.departmentLaboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, Leiden, 2300 RA, Netherlandsen
local.contributor.departmentMax Planck Institute for Astronomy, Königstuhl 17, Heidelberg, 69117, Germanyen
local.contributor.departmentInstitute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlandsen
local.contributor.departmentResearch Laboratory for Astrochemistry, Ural Federal University, Kuibysheva St. 48, Ekaterinburg, 620026, Russian Federationen
local.contributor.departmentLaboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, Jena, 07743, Germanyen
local.contributor.departmentCurrent address: Astrochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United Statesen
local.contributor.departmentLeiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, Leiden, 2300 RA, Netherlandsen
local.contributor.departmentSchool of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdomen
local.contributor.departmentDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United Statesen
local.contributor.departmentNational Radio Astronomy Observatory, Charlottesville, VA 22903, United Statesen
local.contributor.departmentHarvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, United Statesen
local.identifier.pure29832086-
local.description.orderA65-
local.identifier.eid2-s2.0-85126762478-
local.identifier.wosWOS:000765934500001-
local.fund.feuzFEUZ-2020-0038-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85126762478.pdf3,81 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.