Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/112238
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Loukachevitch, N. | en |
dc.contributor.author | Artemova, E. | en |
dc.contributor.author | Batura, T. | en |
dc.contributor.author | Braslavski, P. | en |
dc.contributor.author | Denisov, I. | en |
dc.contributor.author | Ivanov, V. | en |
dc.contributor.author | Manandhar, S. | en |
dc.contributor.author | Pugachev, A. | en |
dc.contributor.author | Tutubalina, E. | en |
dc.date.accessioned | 2022-05-12T08:31:05Z | - |
dc.date.available | 2022-05-12T08:31:05Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | NEREL: A Russian Dataset with Nested Named Entities, Relations and Events / N. Loukachevitch, E. Artemova, T. Batura et al. — DOI 10.1016/j.softx.2022.100995 // International Conference Recent Advances in Natural Language Processing, RANLP. — 2021. — Vol. — P. 876-885. | en |
dc.identifier.isbn | 9789544520724 | - |
dc.identifier.issn | 1313-8502 | - |
dc.identifier.other | All Open Access, Bronze, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/112238 | - |
dc.description.abstract | In this paper, we present NEREL, a Russian dataset for named entity recognition and relation extraction. NEREL is significantly larger than existing Russian datasets: to date it contains 56K annotated named entities and 39K annotated relations. Its important difference from previous datasets is annotation of nested named entities, as well as relations within nested entities and at the discourse level. NEREL can facilitate development of novel models that can extract relations between nested named entities, as well as relations on both sentence and document levels. NEREL also contains the annotation of events involving named entities and their roles in the events. The NEREL collection is available via https://github.com/nerel-ds/NEREL. © 2021 Incoma Ltd. All rights reserved. | en |
dc.description.sponsorship | The project is supported by the Russian Science Foundation, grant # 20-11-20166. The experiments were partially carried out on computational resources of HPC facilities at HSE University. We are grateful to Alexey Yandutov and Igor Rozhkov for providing results of their experiments in named entity recognition and relation extraction. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Incoma Ltd | en1 |
dc.publisher | INCOMA Ltd. Shoumen, BULGARIA | en |
dc.relation | info:eu-repo/grantAgreement/RSF//20-11-20166 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Int. Conf. Recent Adv. Nat. Lang. Proces., RANLP | 2 |
dc.source | International Conference Recent Advances in Natural Language Processing, RANLP | en |
dc.subject | NAMED ENTITIES | en |
dc.subject | NAMED ENTITY RECOGNITION | en |
dc.subject | RELATION EXTRACTION | en |
dc.title | NEREL: A Russian Dataset with Nested Named Entities, Relations and Events | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.conference.name | International Conference on Recent Advances in Natural Language Processing: Deep Learning for Natural Language Processing Methods and Applications, RANLP 2021 | en |
dc.conference.date | 1 September 2021 through 3 September 2021 | - |
dc.identifier.doi | 10.1016/j.softx.2022.100995 | - |
dc.identifier.scopus | 85123612546 | - |
local.contributor.employee | Loukachevitch, N., Lomonosov Moscow State University, Russian Federation; Artemova, E., HSE University, Russian Federation, Huawei Noah's Ark lab, Russian Federation; Batura, T., Lomonosov Moscow State University, Russian Federation, Novosibirsk State University, Russian Federation; Braslavski, P., HSE University, Russian Federation, Ural Federal University, Russian Federation; Denisov, I., Lomonosov Moscow State University, Russian Federation; Ivanov, V., Innopolis University, Russian Federation; Manandhar, S., Wiseyak, United States; Pugachev, A., HSE University, Russian Federation; Tutubalina, E., HSE University, Russian Federation, Kazan Federal University, Russian Federation, Sber AI, Russian Federation | en |
local.description.firstpage | 876 | - |
local.description.lastpage | 885 | - |
local.contributor.department | Lomonosov Moscow State University, Russian Federation; HSE University, Russian Federation; Huawei Noah's Ark lab, Russian Federation; Novosibirsk State University, Russian Federation; Ural Federal University, Russian Federation; Innopolis University, Russian Federation; Kazan Federal University, Russian Federation; Sber AI, Russian Federation; Wiseyak, United States | en |
local.identifier.pure | 29556653 | - |
local.identifier.eid | 2-s2.0-85123612546 | - |
local.fund.rsf | 20-11-20166 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85123612546.pdf | 568,14 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.