Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/112238
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLoukachevitch, N.en
dc.contributor.authorArtemova, E.en
dc.contributor.authorBatura, T.en
dc.contributor.authorBraslavski, P.en
dc.contributor.authorDenisov, I.en
dc.contributor.authorIvanov, V.en
dc.contributor.authorManandhar, S.en
dc.contributor.authorPugachev, A.en
dc.contributor.authorTutubalina, E.en
dc.date.accessioned2022-05-12T08:31:05Z-
dc.date.available2022-05-12T08:31:05Z-
dc.date.issued2021-
dc.identifier.citationNEREL: A Russian Dataset with Nested Named Entities, Relations and Events / N. Loukachevitch, E. Artemova, T. Batura et al. — DOI 10.1016/j.softx.2022.100995 // International Conference Recent Advances in Natural Language Processing, RANLP. — 2021. — Vol. — P. 876-885.en
dc.identifier.isbn9789544520724-
dc.identifier.issn1313-8502-
dc.identifier.otherAll Open Access, Bronze, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/112238-
dc.description.abstractIn this paper, we present NEREL, a Russian dataset for named entity recognition and relation extraction. NEREL is significantly larger than existing Russian datasets: to date it contains 56K annotated named entities and 39K annotated relations. Its important difference from previous datasets is annotation of nested named entities, as well as relations within nested entities and at the discourse level. NEREL can facilitate development of novel models that can extract relations between nested named entities, as well as relations on both sentence and document levels. NEREL also contains the annotation of events involving named entities and their roles in the events. The NEREL collection is available via https://github.com/nerel-ds/NEREL. © 2021 Incoma Ltd. All rights reserved.en
dc.description.sponsorshipThe project is supported by the Russian Science Foundation, grant # 20-11-20166. The experiments were partially carried out on computational resources of HPC facilities at HSE University. We are grateful to Alexey Yandutov and Igor Rozhkov for providing results of their experiments in named entity recognition and relation extraction.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherIncoma Ltden1
dc.publisherINCOMA Ltd. Shoumen, BULGARIAen
dc.relationinfo:eu-repo/grantAgreement/RSF//20-11-20166en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceInt. Conf. Recent Adv. Nat. Lang. Proces., RANLP2
dc.sourceInternational Conference Recent Advances in Natural Language Processing, RANLPen
dc.subjectNAMED ENTITIESen
dc.subjectNAMED ENTITY RECOGNITIONen
dc.subjectRELATION EXTRACTIONen
dc.titleNEREL: A Russian Dataset with Nested Named Entities, Relations and Eventsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.nameInternational Conference on Recent Advances in Natural Language Processing: Deep Learning for Natural Language Processing Methods and Applications, RANLP 2021en
dc.conference.date1 September 2021 through 3 September 2021-
dc.identifier.doi10.1016/j.softx.2022.100995-
dc.identifier.scopus85123612546-
local.contributor.employeeLoukachevitch, N., Lomonosov Moscow State University, Russian Federation; Artemova, E., HSE University, Russian Federation, Huawei Noah's Ark lab, Russian Federation; Batura, T., Lomonosov Moscow State University, Russian Federation, Novosibirsk State University, Russian Federation; Braslavski, P., HSE University, Russian Federation, Ural Federal University, Russian Federation; Denisov, I., Lomonosov Moscow State University, Russian Federation; Ivanov, V., Innopolis University, Russian Federation; Manandhar, S., Wiseyak, United States; Pugachev, A., HSE University, Russian Federation; Tutubalina, E., HSE University, Russian Federation, Kazan Federal University, Russian Federation, Sber AI, Russian Federationen
local.description.firstpage876-
local.description.lastpage885-
local.contributor.departmentLomonosov Moscow State University, Russian Federation; HSE University, Russian Federation; Huawei Noah's Ark lab, Russian Federation; Novosibirsk State University, Russian Federation; Ural Federal University, Russian Federation; Innopolis University, Russian Federation; Kazan Federal University, Russian Federation; Sber AI, Russian Federation; Wiseyak, United Statesen
local.identifier.pure29556653-
local.identifier.eid2-s2.0-85123612546-
local.fund.rsf20-11-20166-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85123612546.pdf568,14 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.