Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/112213
Title: Redox Conversions of 5-Methyl-6-nitro-7-oxo-4,7-dihydro-1,2,4triazolo[1,5-a]pyrimidinide l-Arginine Monohydrate as a Promising Antiviral Drug
Authors: Ivoilova, A.
Mikhalchenko, L. V.
Tsmokalyuk, A.
Leonova, M.
Lalov, A.
Mozharovskaia, P.
Kozitsina, A. N.
Ivanova, A. V.
Rusinov, V. L.
Issue Date: 2021
Publisher: MDPI AG
MDPI AG
Citation: Redox Conversions of 5-Methyl-6-nitro-7-oxo-4,7-dihydro-1,2,4triazolo[1,5-a]pyrimidinide l-Arginine Monohydrate as a Promising Antiviral Drug / A. Ivoilova, L. V. Mikhalchenko, A. Tsmokalyuk et al. // Molecules. — 2021. — Vol. 26. — Iss. 16. — 5087.
Abstract: This article presents the results of a study of electrochemical transformations in aqueous and aprotic media of 5-methyl-6-nitro-7-oxo-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidinide l-arginine monohydrate (1a, Triazid) obtained by electrochemical methods and ESR spectroscopy. The effect of pH on the current and the reduction potential of 1a in an aqueous Britton–Robinson buffer solution was studied. It was found that 1a is irreversibly reduced in aqueous acidic media on a glassy carbon electrode in one stage with the participation of six electrons and the formation of 5-methyl-6-amino-7-oxo-1,2,4-triazolo[1,5-a]pyrimidin. The electroreduction of 1a in DMF on a background of tetrabutylammonium salts proceeds in two stages, controlled by the kinetics of second-order reactions. In the first stage, the reduction of 1a is accompanied by protonation by the initial compound of the basic intermediate products formed in the electrode reaction (self-protonation mechanism). The second quasi-reversible stage of the electroreduction 1a corresponds to the formation of a dianion radical upon the reduction of the heterocyclic anion 5-methyl-6-nitro-7-oxo-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidin, which is formed upon the potentials of the first peak. The ESR spectrum of the radical dianion was recorded upon electroreduction of Triazid in the presence of Bu4NOH. The effect of the formation of ion pairs on the reversibility of the second peak of the 1a transformation is shown. A change in the rate and regioselectivity of the protonation of the dianion radical in the presence of Na+ and Li+ ions is assumed. The results of studying the electroreduction of 1a by ESR spectroscopy with a TEMPO trap make it possible to assume the simultaneous formation of both a nitroxyl radical and a radical with the spin density localized on the nitrogen at the 4 position of the six-membered ring. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords: ANTIVIRAL DRUGS
CYCLIC VOLTAMMETRY
ESR SPECTROSCOPY
NITRO GROUP TRANSFORMATIONS
NITRO-1,2,4-TRIAZOLO[1,5A]PYRIMIDINES
NITROAROMATIC COMPOUNDS
NITROHETEROCYCLIC COMPOUNDS
TRIAZID
ANTIVIRUS AGENT
TRIAZOLE DERIVATIVE
CHEMISTRY
ELECTRICITY
ELECTROCHEMISTRY
ELECTRON
ELECTRON SPIN RESONANCE
MOLECULAR MODEL
OXIDATION REDUCTION REACTION
ANTIVIRAL AGENTS
ELECTRICITY
ELECTROCHEMISTRY
ELECTRON SPIN RESONANCE SPECTROSCOPY
ELECTRONS
MODELS, MOLECULAR
OXIDATION-REDUCTION
TRIAZOLES
URI: http://hdl.handle.net/10995/112213
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85113455111
PURE ID: 23694014
ISSN: 1420-3049
metadata.dc.description.sponsorship: Funding: This work was supported by the Russian Foundation for Basic Research (RFBR, project No. 19-29-08015 mk).
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85113455111.pdf2,94 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.