Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/112209
Название: | Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds-A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
Авторы: | Gerasimova, E. L. Gazizullina, E. R. Borisova, M. V. Igdisanova, D. I. Nikiforov, E. A. Moseev, T. D. Varaksin, M. V. Chupakhin, O. N. Charushin, V. N. Ivanova, A. V. |
Дата публикации: | 2021 |
Издатель: | MDPI MDPI AG |
Библиографическое описание: | Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds-A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes / E. L. Gerasimova, E. R. Gazizullina, M. V. Borisova et al. // Molecules. — 2021. — Vol. 26. — Iss. 21. — 6534. |
Аннотация: | The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2H-imidazole-derived phenolic compounds affording the bifunctional 2H-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2H-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2H-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2H-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2, 2-dimethyl-5-(4- nitrophenyl)-2H-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (104 mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds. © 2021 by the authors. |
Ключевые слова: | 2H-IMIDAZOLE ANTIOXIDANT CAPACITY ANTIRADICAL CAPACITY POLYPHENOLS 1,1-DIPHENYL-2-PICRYLHYDRAZYL ANTIOXIDANT BIPHENYL DERIVATIVE IMIDAZOLE IMIDAZOLE DERIVATIVE PHENOL DERIVATIVE PICRIC ACID CHEMICAL STRUCTURE CHEMISTRY DOSE RESPONSE DRUG DESIGN DRUG EFFECT OXIDATIVE STRESS SYNTHESIS ANTIOXIDANTS BIPHENYL COMPOUNDS DOSE-RESPONSE RELATIONSHIP, DRUG DRUG DESIGN IMIDAZOLES MOLECULAR STRUCTURE OXIDATIVE STRESS PHENOLS PICRATES |
URI: | http://elar.urfu.ru/handle/10995/112209 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор РИНЦ: | 47535347 |
Идентификатор SCOPUS: | 85120667461 |
Идентификатор WOS: | 000719489600001 |
Идентификатор PURE: | 28959271 |
ISSN: | 1420-3049 |
DOI: | 10.3390/molecules26216534 |
Сведения о поддержке: | This work was financially supported within the framework of the grant agreement as government subsidies from the Federal budget in accordance with paragraph 4 of article 78.1 of the Budget Code of the Russian Federation (Moscow, 1 October 2020, No. 075-15-2020-777). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85120667461.pdf | 4,33 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.