Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/112194
Название: Towards Understanding the Algorithms for Solving the Navier-Stokes Equations
Авторы: Ershkov, S. V.
Prosviryakov, E. Y.
Burmasheva, N. V.
Christianto, V.
Дата публикации: 2021
Издатель: IOP Publishing Ltd
IOP Publishing
Библиографическое описание: Towards Understanding the Algorithms for Solving the Navier-Stokes Equations / S. V. Ershkov, E. Y. Prosviryakov, N. V. Burmasheva et al. — DOI 10.1137/S0036142996278967 // Fluid Dynamics Research. — 2021. — Vol. 53. — Iss. 4. — 044501.
Аннотация: In this paper, we present a review of featured works in the field of hydrodynamics with the main aim to clarify the ways of understanding the algorithms for solving the Navier-Stokes equations. Discussing the existing algorithms, approaches and analytical or semi-analytical methods, we especially note that important problems of stability for the exact solutions should be explored accordingly relate to this respect, e.g. exploring the case of non-stationary helical flows of the Navier-Stokes equations for incompressible fluids with variable (spatially dependent) coefficient of proportionality α between velocity and the curl field of the flow. Meanwhile, the system of Navier-Stokes equations (including continuity equation) has been successfully explored previously with respect to the existence of analytical way for presentation of non-stationary helical flows of the aforementioned type. Conditions for the stability criteria of the exact solution for such the type of flows are obtained herein in the current research, for which non-stationary helical flow with invariant Bernoulli-function is considered. © 2021 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.
Ключевые слова: EXACT SOLUTION
NAVIER-STOKES EQUATIONS
NON-STATIONARY SOLUTION
STABILITY OF FLOW
STABILITY CRITERIA
VISCOUS FLOW
BERNOULLI FUNCTION
CONTINUITY EQUATIONS
EXACT SOLUTION
HELICAL FLOWS
INCOMPRESSIBLE FLUID
NONSTATIONARY
SEMI-ANALYTICAL METHODS
NAVIER STOKES EQUATIONS
URI: http://elar.urfu.ru/handle/10995/112194
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85111980118
Идентификатор WOS: 000674456700001
Идентификатор PURE: 22984110
ISSN: 0169-5983
DOI: 10.1137/S0036142996278967
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85111980118.pdf427,88 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.