Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/112190
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Finkelstein, A. | en |
dc.contributor.author | Schaefer, A. | en |
dc.contributor.author | Dubinin, N. | en |
dc.date.accessioned | 2022-05-12T08:30:12Z | - |
dc.date.available | 2022-05-12T08:30:12Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Finkelstein A. Aluminum Alloy Selection for in Situ Composite Production by Oxygen Blowing / A. Finkelstein, A. Schaefer, N. Dubinin // Metals. — 2021. — Vol. 11. — Iss. 12. — 1984. | en |
dc.identifier.issn | 2075-4701 | - |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/112190 | - |
dc.description.abstract | We considered the possibility of using AlMg10, AlCu5, AlCu5Cd, AlSi12, and AlSi7Zn9 as initial alloys for in situ composites production via oxygen blowing of hydrogen pre-saturated melts as an alternative to AlSi7Fe. The production process provides the destruction of the oxide film on the melt surface. It was demonstrated that oxide film on AlMg10 alloy did not get destroyed due to the heavy thickness because of the porous structure that contributed to its kinetically based growth. Copper-bearing alloys AlCu5 and AlCu5Cd were characterized by the low-strength oxide film and got destroyed before floating, causing the oxide porosity. Silicon-bearing alloys AlSi12 and AlSi7Zn9 provide the dense structure, which makes it clear that to understand the Pilling–Bedworth ratio for basic alloying elements is required for a non-destructed oxide void floating and shall exceed the range of 1.64–1.77. However, the oxide film in silicon-bearing alloys under investigation did not get destroyed into fine particles. AlSi7Zn9 alloy had inclusions of smaller sizes as compared to AlSi12 alloy due to the ZnO that embrittled the film, but which were grouped to form oxide islands. Moreover, zinc was evaporated during blowing. The mechanical properties of the produced composites were based on the alloys under investigation which were in line with their structures. A higher value of the Pilling–Bedworth ratio of impurities was required for fine crushing: The conventionally used AlSi7Fe alloy met this requirement and was therefore considered to be the optimum version. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | en |
dc.description.sponsorship | The Laboratory for structural methods of analysis and properties of materials and nanomaterials of Shared Research Center of Ural Federal University supported SEM and EDS investigations. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en1 |
dc.publisher | MDPI AG | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Metals | 2 |
dc.source | Metals | en |
dc.subject | ALUMINUM ALLOYS | en |
dc.subject | IN SITU COMPOSITE | en |
dc.subject | OXIDE FILM | en |
dc.subject | OXIDE ISLAND | en |
dc.subject | OXIDE PORE | en |
dc.subject | OXYGEN BLOWING | en |
dc.subject | PILLING–BEDWORTH RATIO | en |
dc.title | Aluminum Alloy Selection for in Situ Composite Production by Oxygen Blowing | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 47537643 | - |
dc.identifier.doi | 10.3390/met11121984 | - |
dc.identifier.scopus | 85120753329 | - |
local.contributor.employee | Finkelstein, A., Department of Foundry Engineering and Strengthening Technologies, Ural Federal University, Ekaterinburg, 620002, Russian Federation; Schaefer, A., Department of Foundry Engineering and Strengthening Technologies, Ural Federal University, Ekaterinburg, 620002, Russian Federation; Dubinin, N., Department of Foundry Engineering and Strengthening Technologies, Ural Federal University, Ekaterinburg, 620002, Russian Federation, Department of Heterogonous Processes, Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russian Federation | en |
local.issue | 12 | - |
local.volume | 11 | - |
dc.identifier.wos | 000736777500001 | - |
local.contributor.department | Department of Foundry Engineering and Strengthening Technologies, Ural Federal University, Ekaterinburg, 620002, Russian Federation; Department of Heterogonous Processes, Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016, Russian Federation | en |
local.identifier.pure | 29148191 | - |
local.description.order | 1984 | - |
local.identifier.eid | 2-s2.0-85120753329 | - |
local.identifier.wos | WOS:000736777500001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85120753329.pdf | 2,38 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.