Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/112184
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGomoyunov, M. I.en
dc.date.accessioned2022-05-12T08:30:07Z-
dc.date.available2022-05-12T08:30:07Z-
dc.date.issued2021-
dc.identifier.citationGomoyunov M. I. Differential Games for Fractional-Order Systems: Hamilton–Jacobi–Bellman–Isaacs Equation and Optimal Feedback Strategies / M. I. Gomoyunov // Mathematics. — 2021. — Vol. 9. — Iss. 14. — 1667.en
dc.identifier.issn2227-7390-
dc.identifier.otherAll Open Access, Gold3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/112184-
dc.description.abstractThe paper deals with a two-person zero-sum differential game for a dynamical system described by differential equations with the Caputo fractional derivatives of an order α ∈ (0, 1) and a Bolza-type cost functional. A relationship between the differential game and the Cauchy problem for the corresponding Hamilton–Jacobi–Bellman–Isaacs equation with fractional coinvariant derivatives of the order α and the natural boundary condition is established. An emphasis is given to construction of optimal positional (feedback) strategies of the players. First, a smooth case is studied when the considered Cauchy problem is assumed to have a sufficiently smooth solution. After that, to cope with a general non-smooth case, a generalized minimax solution of this problem is involved. © 2021 by the author. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipFunding: This research was funded by the Russian Science Foundation Grant No. 19-71-00073.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPI AGen1
dc.publisherMDPI AGen
dc.relationinfo:eu-repo/grantAgreement/RSF//19-71-00073en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectDIFFERENTIAL GAMESen
dc.subjectFRACTIONAL COINVARIANT DERIVATIVESen
dc.subjectFRACTIONAL DIFFERENTIAL EQUATIONSen
dc.subjectHAMILTON–JACOBI EQUATIONSen
dc.subjectMINIMAX SOLUTIONen
dc.subjectOPTIMAL STRATEGIESen
dc.subjectVALUE FUNCTIONALen
dc.titleDifferential Games for Fractional-Order Systems: Hamilton–Jacobi–Bellman–Isaacs Equation and Optimal Feedback Strategiesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi46923921-
dc.identifier.doi10.3390/math9141667-
dc.identifier.scopus85111316542-
local.contributor.employeeGomoyunov, M.I., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 16, Ekaterinburg, 620108, Russian Federation, Institute of Natural Sciences and Mathematics, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federationen
local.issue14-
local.volume9-
dc.identifier.wos000676754000001-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 16, Ekaterinburg, 620108, Russian Federation; Institute of Natural Sciences and Mathematics, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federationen
local.identifier.pure22990710-
local.description.order1667-
local.identifier.eid2-s2.0-85111316542-
local.fund.rsf19-71-00073-
local.identifier.wosWOS:000676754000001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85111316542.pdf332,29 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.