Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/112184
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Gomoyunov, M. I. | en |
dc.date.accessioned | 2022-05-12T08:30:07Z | - |
dc.date.available | 2022-05-12T08:30:07Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Gomoyunov M. I. Differential Games for Fractional-Order Systems: Hamilton–Jacobi–Bellman–Isaacs Equation and Optimal Feedback Strategies / M. I. Gomoyunov // Mathematics. — 2021. — Vol. 9. — Iss. 14. — 1667. | en |
dc.identifier.issn | 2227-7390 | - |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/112184 | - |
dc.description.abstract | The paper deals with a two-person zero-sum differential game for a dynamical system described by differential equations with the Caputo fractional derivatives of an order α ∈ (0, 1) and a Bolza-type cost functional. A relationship between the differential game and the Cauchy problem for the corresponding Hamilton–Jacobi–Bellman–Isaacs equation with fractional coinvariant derivatives of the order α and the natural boundary condition is established. An emphasis is given to construction of optimal positional (feedback) strategies of the players. First, a smooth case is studied when the considered Cauchy problem is assumed to have a sufficiently smooth solution. After that, to cope with a general non-smooth case, a generalized minimax solution of this problem is involved. © 2021 by the author. Licensee MDPI, Basel, Switzerland. | en |
dc.description.sponsorship | Funding: This research was funded by the Russian Science Foundation Grant No. 19-71-00073. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI AG | en1 |
dc.publisher | MDPI AG | en |
dc.relation | info:eu-repo/grantAgreement/RSF//19-71-00073 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Mathematics | 2 |
dc.source | Mathematics | en |
dc.subject | DIFFERENTIAL GAMES | en |
dc.subject | FRACTIONAL COINVARIANT DERIVATIVES | en |
dc.subject | FRACTIONAL DIFFERENTIAL EQUATIONS | en |
dc.subject | HAMILTON–JACOBI EQUATIONS | en |
dc.subject | MINIMAX SOLUTION | en |
dc.subject | OPTIMAL STRATEGIES | en |
dc.subject | VALUE FUNCTIONAL | en |
dc.title | Differential Games for Fractional-Order Systems: Hamilton–Jacobi–Bellman–Isaacs Equation and Optimal Feedback Strategies | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 46923921 | - |
dc.identifier.doi | 10.3390/math9141667 | - |
dc.identifier.scopus | 85111316542 | - |
local.contributor.employee | Gomoyunov, M.I., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 16, Ekaterinburg, 620108, Russian Federation, Institute of Natural Sciences and Mathematics, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federation | en |
local.issue | 14 | - |
local.volume | 9 | - |
dc.identifier.wos | 000676754000001 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 16, Ekaterinburg, 620108, Russian Federation; Institute of Natural Sciences and Mathematics, Ural Federal University, Mira Str., 19, Ekaterinburg, 620002, Russian Federation | en |
local.identifier.pure | 22990710 | - |
local.description.order | 1667 | - |
local.identifier.eid | 2-s2.0-85111316542 | - |
local.fund.rsf | 19-71-00073 | - |
local.identifier.wos | WOS:000676754000001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85111316542.pdf | 332,29 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.