Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/112182
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Lobovikov, V. O. | en |
dc.date.accessioned | 2022-05-12T08:30:06Z | - |
dc.date.available | 2022-05-12T08:30:06Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Lobovikov V. O. A Logically Formalized Axiomatic Epistemology System Σ + c and Philosophical Grounding Mathematics as a Self-Sufficing System / V. O. Lobovikov // Mathematics. — 2021. — Vol. 9. — Iss. 16. — 1859. | en |
dc.identifier.issn | 2227-7390 | - |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/112182 | - |
dc.description.abstract | The subject matter of this research is Kant’s apriorism underlying Hilbert’s formalism in the philosophical grounding of mathematics as a self-sufficing system. The research aim is the in-vention of such a logically formalized axiomatic epistemology system, in which it is possible to con-struct formal deductive inferences of formulae—modeling the formalism ideal of Hilbert—from the assumption of Kant’s apriorism in relation to mathematical knowledge. The research method is hy-pothetical–deductive (axiomatic). The research results and their scientific novelty are based on a logically formalized axiomatic system of epistemology called Σ + C, constructed here for the first time. In comparison with the already published formal epistemology systems X and Σ, some of the axiom schemes here are generalized in Σ + C, and a new symbol is included in the object-language alphabet of Σ + C, namely, the symbol representing the perfection modality, C: “it is consistent that…”. The meaning of this modality is defined by the system of axiom schemes of Σ + C. A deductive proof of the consistency of Σ + C is submitted. For the first time, by means of Σ + C, it is deduc-tively demonstrated that, from the conjunction of Σ + C and either the first or second version of Gödel’s theorem of incompleteness of a formal arithmetic system, the formal arithmetic investigated by Gödel is a representation of an empirical knowledge system. Thus, Kant’s view of mathematics as a self-sufficient, pure, a priori knowledge system is falsified. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI AG | en1 |
dc.publisher | MDPI AG | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Mathematics | 2 |
dc.source | Mathematics | en |
dc.subject | A PRIORI KNOWLEDGE | en |
dc.subject | EMPIRICAL KNOWLEDGE | en |
dc.subject | GÖDEL’S INCOMPLETENESS THEOREM | en |
dc.subject | HILBERT’S FORMALISM | en |
dc.subject | KANT’S APRIORISM | en |
dc.subject | LOGICALLY FORMALIZED AXIOMATIC SYSTEM OF EPISTEMOLOGY | en |
dc.subject | TWO-VALUED AL-GEBRAIC SYSTEM OF FORMAL AXIOLOGY | en |
dc.title | A Logically Formalized Axiomatic Epistemology System Σ + c and Philosophical Grounding Mathematics as a Self-Sufficing System | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/math9161859 | - |
dc.identifier.scopus | 85112203267 | - |
local.contributor.employee | Lobovikov, V.O., Laboratory for Applied System Investigations, Ural Federal University, Yekaterinburg, 620075, Russian Federation | en |
local.issue | 16 | - |
local.volume | 9 | - |
dc.identifier.wos | 000690561100001 | - |
local.contributor.department | Laboratory for Applied System Investigations, Ural Federal University, Yekaterinburg, 620075, Russian Federation | en |
local.identifier.pure | 22979809 | - |
local.description.order | 1859 | - |
local.identifier.eid | 2-s2.0-85112203267 | - |
local.identifier.wos | WOS:000690561100001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85112203267.pdf | 319,75 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.