Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/112182
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorLobovikov, V. O.en
dc.date.accessioned2022-05-12T08:30:06Z-
dc.date.available2022-05-12T08:30:06Z-
dc.date.issued2021-
dc.identifier.citationLobovikov V. O. A Logically Formalized Axiomatic Epistemology System Σ + c and Philosophical Grounding Mathematics as a Self-Sufficing System / V. O. Lobovikov // Mathematics. — 2021. — Vol. 9. — Iss. 16. — 1859.en
dc.identifier.issn2227-7390-
dc.identifier.otherAll Open Access, Gold3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/112182-
dc.description.abstractThe subject matter of this research is Kant’s apriorism underlying Hilbert’s formalism in the philosophical grounding of mathematics as a self-sufficing system. The research aim is the in-vention of such a logically formalized axiomatic epistemology system, in which it is possible to con-struct formal deductive inferences of formulae—modeling the formalism ideal of Hilbert—from the assumption of Kant’s apriorism in relation to mathematical knowledge. The research method is hy-pothetical–deductive (axiomatic). The research results and their scientific novelty are based on a logically formalized axiomatic system of epistemology called Σ + C, constructed here for the first time. In comparison with the already published formal epistemology systems X and Σ, some of the axiom schemes here are generalized in Σ + C, and a new symbol is included in the object-language alphabet of Σ + C, namely, the symbol representing the perfection modality, C: “it is consistent that…”. The meaning of this modality is defined by the system of axiom schemes of Σ + C. A deductive proof of the consistency of Σ + C is submitted. For the first time, by means of Σ + C, it is deduc-tively demonstrated that, from the conjunction of Σ + C and either the first or second version of Gödel’s theorem of incompleteness of a formal arithmetic system, the formal arithmetic investigated by Gödel is a representation of an empirical knowledge system. Thus, Kant’s view of mathematics as a self-sufficient, pure, a priori knowledge system is falsified. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPI AGen1
dc.publisherMDPI AGen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectA PRIORI KNOWLEDGEen
dc.subjectEMPIRICAL KNOWLEDGEen
dc.subjectGÖDEL’S INCOMPLETENESS THEOREMen
dc.subjectHILBERT’S FORMALISMen
dc.subjectKANT’S APRIORISMen
dc.subjectLOGICALLY FORMALIZED AXIOMATIC SYSTEM OF EPISTEMOLOGYen
dc.subjectTWO-VALUED AL-GEBRAIC SYSTEM OF FORMAL AXIOLOGYen
dc.titleA Logically Formalized Axiomatic Epistemology System Σ + c and Philosophical Grounding Mathematics as a Self-Sufficing Systemen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math9161859-
dc.identifier.scopus85112203267-
local.contributor.employeeLobovikov, V.O., Laboratory for Applied System Investigations, Ural Federal University, Yekaterinburg, 620075, Russian Federationen
local.issue16-
local.volume9-
dc.identifier.wos000690561100001-
local.contributor.departmentLaboratory for Applied System Investigations, Ural Federal University, Yekaterinburg, 620075, Russian Federationen
local.identifier.pure22979809-
local.description.order1859-
local.identifier.eid2-s2.0-85112203267-
local.identifier.wosWOS:000690561100001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85112203267.pdf319,75 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.