Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/112173
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMangileva, D.en
dc.contributor.authorKonovalov, P.en
dc.contributor.authorDokuchaev, A.en
dc.contributor.authorSolovyova, O.en
dc.contributor.authorPanfilov, A. V.en
dc.date.accessioned2022-05-12T08:29:59Z-
dc.date.available2022-05-12T08:29:59Z-
dc.date.issued2021-
dc.identifier.citationPeriod of Arrhythmia Anchored Around an Infarction Scar in an Anatomical Model of the Human Ventricles / D. Mangileva, P. Konovalov, A. Dokuchaev et al. // Mathematics. — 2021. — Vol. 9. — Iss. 22. — 2911.en
dc.identifier.issn2227-7390-
dc.identifier.otherAll Open Access, Gold3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/112173-
dc.description.abstractRotating nonlinear waves of excitation in the heart cause dangerous cardiac arrhythmias. Frequently, ventricular arrhythmias occur as a result of myocardial infarction and are associated with rotation of the waves around a post-infarction scar. In this paper, we perform a detailed in silico analysis of scroll waves in an anatomical model of the human ventricles with a generic model of the infarction scar surrounded by the gray zone with modified properties of the myocardial tissue. Our model includes a realistic description of the heart shape, anisotropy of cardiac tissue and a detailed description of the electrical activity in human ventricular cells by a TP06 ionic model. We vary the size of the scar and gray zone and analyze the dependence of the rotation period on the injury dimensions. Two main regimes of wave scrolling are observed: the scar rotation, when the wave rotates around the scar, and the gray zone rotation, when the wave rotates around the boundary of the gray zone and normal tissue. The transition from the gray zone to the scar rotation occurs for the width of gray zone above 10–20 mm, depending on the perimeter of the scar. We compare our results with simulations in 2D and show that 3D anisotropy reduces the period of rotation. We finally use a model with a realistic shape of the scar and show that our approach predicts correctly the period of the arrhythmia. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipA.V.P., P.K., D.M., A.D., and O.S. was funded by the Russian Foundation for Basic Research (№ 18-29-13008). P.K., D.M., A.D., and O.S. work was carried out within the framework of the IIF UrB RAS theme No AAAA-A21-121012090093-0.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen1
dc.publisherMDPI AGen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMathematics2
dc.sourceMathematicsen
dc.subjectCARDIAC ARRHYTHMIAen
dc.subjectCARDIAC MODELINGen
dc.subjectMYOCARDIAL INFARCTIONen
dc.subjectSCROLL WAVEen
dc.titlePeriod of Arrhythmia Anchored Around an Infarction Scar in an Anatomical Model of the Human Ventriclesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/math9222911-
dc.identifier.scopus85119591551-
local.contributor.employeeMangileva, D., Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation, Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, 620075, Russian Federation; Konovalov, P., Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation; Dokuchaev, A., Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation; Solovyova, O., Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation, Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, 620075, Russian Federation; Panfilov, A.V., Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, 620075, Russian Federation, Department of Physics and Astronomy, Ghent University, Ghent, 9000, Belgium, World-Class Research Center ‘Digital Biodesign and Personalized Healthcare’, Sechenov University, Moscow, 119146, Russian Federationen
local.issue22-
local.volume9-
dc.identifier.wos000728608800001-
local.contributor.departmentInstitute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation; Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, 620075, Russian Federation; Department of Physics and Astronomy, Ghent University, Ghent, 9000, Belgium; World-Class Research Center ‘Digital Biodesign and Personalized Healthcare’, Sechenov University, Moscow, 119146, Russian Federationen
local.identifier.pure29067009-
local.description.order2911-
local.identifier.eid2-s2.0-85119591551-
local.fund.rffi18-29-13008-
local.identifier.wosWOS:000728608800001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85119591551.pdf4,75 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.