Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/112137
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlmuqrin, A. H.en
dc.contributor.authorHanfi, M. Y.en
dc.contributor.authorSayyed, M. I.en
dc.contributor.authorMahmoud, K. G.en
dc.contributor.authorAl-Ghamdi, H.en
dc.contributor.authorAloraini, D. A.en
dc.date.accessioned2022-05-12T08:29:23Z-
dc.date.available2022-05-12T08:29:23Z-
dc.date.issued2021-
dc.identifier.citationInfluence of Li2O Incrementation on Mechanical and Gamma-Ray Shielding Characteristics of a TeO2-As2O3-B2O3 Glass System / A. H. Almuqrin, M. Y. Hanfi, M. I. Sayyed et al. // Materials. — 2021. — Vol. 14. — Iss. 14. — 4060.en
dc.identifier.issn1996-1944-
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/112137-
dc.description.abstractAccording to the Makishema–Mackenzie model assumption, the dissociation energy and packing density for a quaternary TeO2-As2O3-B2O3-Li2O glass system were evaluated. The dissociation energy rose from 67.07 to 71.85 kJ/cm3, whereas the packing factor decreased from 16.55 to 15.21 cm3/mol associated with the replacement of TeO2 by LiO2 compounds. Thus, as a result, the elastic moduli (longitudinal, shear, Young, and bulk) were enhanced by increasing the LiO2 insertion. Based on the estimated elastic moduli, mechanical properties such as the Poisson ratio, microhard-ness, longitudinal velocity, shear velocity, and softening temperature were evaluated for the investigated glass samples. In order to evaluate the studied glasses’ gamma-ray shield capacity, the MCNP-5 code, as well as a theoretical Phy-X/PSD program, were applied. The best shielding capacity was achieved for the glass system containing 25 mol% of TeO2, while the lowest ability was obtained for the glass sample with a TeO2 concentration of 5 mol%. Furthermore, a correlation between the studied glasses’ microhardness and linear attenuation coefficient was performed versus the LiO2 concentration to select the glass sample which possesses a suitable mechanical and shielding capacity. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipThis research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program to support publication in a top journal (Grant no. 42-FTTJ-67).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPI AGen1
dc.publisherMDPI AGen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMater.2
dc.sourceMaterialsen
dc.subjectELASTIC MODULIen
dc.subjectMECHANICAL PROPERTIESen
dc.subjectMONTE CARLO SIMULATIONen
dc.subjectSHIELDING PROPERTIESen
dc.subjectDISSOCIATIONen
dc.subjectELASTIC MODULIen
dc.subjectGLASSen
dc.subjectLITHIUM COMPOUNDSen
dc.subjectPOISSON RATIOen
dc.subjectSHEAR FLOWen
dc.subjectSHIELDINGen
dc.subjectDISSOCIATION ENERGIESen
dc.subjectGAMMA-RAY SHIELDINGen
dc.subjectLINEAR ATTENUATION COEFFICIENTSen
dc.subjectLONGITUDINAL VELOCITYen
dc.subjectMODEL ASSUMPTIONSen
dc.subjectSHEAR VELOCITIESen
dc.subjectSHIELDING CAPACITYen
dc.subjectSOFTENING TEMPERATUREen
dc.subjectGAMMA RAYSen
dc.titleInfluence of Li2O Incrementation on Mechanical and Gamma-Ray Shielding Characteristics of a TeO2-As2O3-B2O3 Glass Systemen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi46941514-
dc.identifier.doi10.3390/ma14144060-
dc.identifier.scopus85111593118-
local.contributor.employeeAlmuqrin, A.H., Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia; Hanfi, M.Y., Institute of Physics and Technology, Ural Federal University, Str. Mira 19, Yekaterinburg, 620002, Russian Federation; Sayyed, M.I., Department of Nuclear Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia; Mahmoud, K.G., Department of Nuclear Power Plants and Renewable Energy Sources, Ural Power Engineering Institute, Ural Federal University, Str. Mira 19, Yekaterinburg, 620002, Russian Federation; Al-Ghamdi, H., Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia; Aloraini, D.A., Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabiaen
local.issue14-
local.volume14-
dc.identifier.wos000677325300001-
local.contributor.departmentDepartment of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia; Institute of Physics and Technology, Ural Federal University, Str. Mira 19, Yekaterinburg, 620002, Russian Federation; Department of Nuclear Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman bin Faisal University, Dammam, 31441, Saudi Arabia; Department of Nuclear Power Plants and Renewable Energy Sources, Ural Power Engineering Institute, Ural Federal University, Str. Mira 19, Yekaterinburg, 620002, Russian Federationen
local.identifier.pure22990622-
local.description.order4060-
local.identifier.eid2-s2.0-85111593118-
local.identifier.wosWOS:000677325300001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85111593118.pdf5,28 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.