Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/112092
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Jackson, M. | en |
dc.contributor.author | Volkov, M. | en |
dc.date.accessioned | 2022-05-12T08:27:57Z | - |
dc.date.available | 2022-05-12T08:27:57Z | - |
dc.date.issued | 2010 | - |
dc.identifier.citation | Jackson M. The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion / M. Jackson, M. Volkov // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2010. — Vol. 6300 LNCS. — P. 414-443. | en |
dc.identifier.isbn | 3642150241 | - |
dc.identifier.isbn | 9783642150241 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/112092 | - |
dc.description.abstract | We establish a surprisingly close relationship between universal Horn classes of directed graphs and varieties generated by so-called adjacency semigroups which are Rees matrix semigroups over the trivial group with the unary operation of reversion. In particular, the lattice of subvarieties of the variety generated by adjacency semigroups that are regular unary semigroups is essentially the same as the lattice of universal Horn classes of reflexive directed graphs. A number of examples follow, including a limit variety of regular unary semigroups and finite unary semigroups with NP-hard variety membership problems. © 2010 Springer-Verlag Berlin Heidelberg. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer Berlin Heidelberg | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Lect. Notes Comput. Sci. | 2 |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | FINITE BASIS PROBLEM | en |
dc.subject | GRAPH | en |
dc.subject | REES MATRIX SEMIGROUP | en |
dc.subject | UNARY SEMIGROUP IDENTITY | en |
dc.subject | UNARY SEMIGROUP VARIETY | en |
dc.subject | UNIVERSAL HORN CLASS | en |
dc.subject | UNIVERSAL HORN SENTENCE | en |
dc.subject | VARIETY MEMBERSHIP PROBLEM | en |
dc.subject | FINITE BASIS PROBLEM | en |
dc.subject | GRAPH | en |
dc.subject | MATRIX | en |
dc.subject | MEMBERSHIP PROBLEM | en |
dc.subject | SEMI-GROUP | en |
dc.subject | UNIVERSAL HORN CLASS | en |
dc.subject | UNIVERSAL HORN SENTENCE | en |
dc.subject | COMPUTER SCIENCE | en |
dc.subject | GRAPH THEORY | en |
dc.subject | TECHNICAL PRESENTATIONS | en |
dc.subject | MATRIX ALGEBRA | en |
dc.title | The Algebra of Adjacency Patterns: Rees Matrix Semigroups with Reversion | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.conference.name | 35th International Symposium on Mathematical Foundations of Computer Science, MFCS 2010, and 19th EACSL Annual Conference on Computer Science Logic, CSL 2010 | en |
dc.conference.date | 22 August 2010 through 22 August 2010 | - |
dc.identifier.scopus | 77956565649 | - |
local.contributor.employee | Jackson, M., La Trobe University, VIC 3086, Australia; Volkov, M., Ural State University, Ekaterinburg 620083, Russian Federation | en |
local.description.firstpage | 414 | - |
local.description.lastpage | 443 | - |
local.volume | 6300 LNCS | - |
dc.identifier.wos | 000286783000021 | - |
local.contributor.department | La Trobe University, VIC 3086, Australia; Ural State University, Ekaterinburg 620083, Russian Federation | en |
local.identifier.pure | 7881234 | - |
local.identifier.eid | 2-s2.0-77956565649 | - |
local.identifier.wos | WOS:000286783000021 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-77956565649.pdf | 407,99 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.