Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/112014
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Artyomova, N. A. | en |
dc.contributor.author | Ushakova, O. V. | en |
dc.date.accessioned | 2022-05-12T08:27:09Z | - |
dc.date.available | 2022-05-12T08:27:09Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Artyomova N. A. About Grid Generation in Constructions Bounded by the Surfaces of Revolution / N. A. Artyomova, O. V. Ushakova // Journal of Physics: Conference Series. — 2021. — Vol. 2099. — Iss. 1. — 012018. | en |
dc.identifier.issn | 1742-6588 | - |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/112014 | - |
dc.description.abstract | For constructions bounded by the surfaces of revolution, structured grid generation technique is presented. Its technology has been elaborated within the variational approach for constructing optimal grids satisfying optimality criteria: Closeness of grids to uniform ones, closeness of grids to orthogonal ones and adaptation to a given function. Grid generation has been designed for numerical solution of the differential equations modeling the vortex processes of multi-component hydrodynamics. In the technology, the three-dimensional construction in which it is required to construct a grid is represented in the form of the curvilinear hexahedron defining its configuration. The specific feature of the required configurations is that some faces of a curvilinear hexahedron lie in one plane and along edges of adjoining faces grid cells degenerate into prisms. Grid generation in the considered constructions has started to be developed by the elaboration of algorithms for the volume of revolution which has become the basic construction. The basic construction is obtained by the rotation through 180° around the axis of a generatrix consisting of straight line segments, arcs of circles and ellipses. Then the deformed volumes of revolutions are considered along with the generalizations of the volume of revolution which represent constructions obtained by the surfaces of revolution with parallel axis of rotation. The aim of the further development of the technology is to consider more and more complicated constructions and elaborate the technology for them. In the presentation, the current state of the development of the technology is given. Examples of generated grids are supplied. © 2021 Institute of Physics Publishing. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | IOP Publishing Ltd | en1 |
dc.publisher | IOP Publishing | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | J. Phys. Conf. Ser. | 2 |
dc.source | Journal of Physics: Conference Series | en |
dc.subject | MESH GENERATION | en |
dc.subject | ORTHOGONAL FUNCTIONS | en |
dc.subject | DIFFERENTIAL EQUATION MODEL | en |
dc.subject | GENERATION TECHNIQUES | en |
dc.subject | GRID GENERATION | en |
dc.subject | MULTICOMPONENTS | en |
dc.subject | NUMERICAL SOLUTION OF THE DIFFERENTIAL EQUATIONS | en |
dc.subject | OPTIMALITY CRITERIA | en |
dc.subject | STRUCTURED GRID GENERATION | en |
dc.subject | SURFACE OF REVOLUTION | en |
dc.subject | THREE-DIMENSIONAL CONSTRUCTION | en |
dc.subject | VARIATIONAL APPROACHES | en |
dc.subject | DIFFERENTIAL EQUATIONS | en |
dc.title | About Grid Generation in Constructions Bounded by the Surfaces of Revolution | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.conference.name | International Conference on Marchuk Scientific Readings 2021, MSR 2021 | en |
dc.conference.date | 4 October 2021 through 8 October 2021 | - |
dc.identifier.doi | 10.1088/1742-6596/2099/1/012018 | - |
dc.identifier.scopus | 85123740727 | - |
local.contributor.employee | Artyomova, N.A., N.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S.Kovalevskaya st. 16, Ekaterinburg, 620990, Russian Federation; Ushakova, O.V., N.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S.Kovalevskaya st. 16, Ekaterinburg, 620990, Russian Federation, Ural Federal University Named after First President of Russia B.N. Yeltsin, Mira st. 19, Ekaterinburg, 620002, Russian Federation | en |
local.issue | 1 | - |
local.volume | 2099 | - |
local.contributor.department | N.N. Krasovskii Inst. of Math. and Mechanics of the Ural Branch of the Russian Academy of Sciences, S.Kovalevskaya st. 16, Ekaterinburg, 620990, Russian Federation; Ural Federal University Named after First President of Russia B.N. Yeltsin, Mira st. 19, Ekaterinburg, 620002, Russian Federation | en |
local.identifier.pure | 29560250 | - |
local.description.order | 012018 | - |
local.identifier.eid | 2-s2.0-85123740727 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85123740727.pdf | 7,42 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.