Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111986
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorJing, R.en
dc.contributor.authorZhang, L.en
dc.contributor.authorHu, Q.en
dc.contributor.authorAlikin, D. O.en
dc.contributor.authorShur, V. Y.en
dc.contributor.authorWei, X.en
dc.contributor.authorZhang, L.en
dc.contributor.authorLiu, G.en
dc.contributor.authorZhang, H.en
dc.contributor.authorJin, L.en
dc.contributor.authorШур, В. Я.ru
dc.date.accessioned2022-05-12T08:26:42Z-
dc.date.available2022-05-12T08:26:42Z-
dc.date.issued2022-
dc.identifier.citationPhase Evolution and Relaxor to Ferroelectric Phase Transition Boosting Ultrahigh Electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 Solid Solutions / R. Jing, L. Zhang, Q. Hu et al. // Journal of Materiomics. — 2022. — Vol. 8. — Iss. 2. — P. 335-346.en
dc.identifier.issn2352-8478-
dc.identifier.otherAll Open Access, Gold3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111986-
dc.description.abstractOwing to the complex composition architecture of these solid solutions, some fundamental issues of the classical (1−x)Bi1/2Na1/2TiO-xBi1/2K1/2TiO3 (BNT-xBKT) binary system, such as details of phase evolution and optimal Na/K ratio associated with the highest strain responses, remain unresolved. In this work, we systematically investigated the phase evolution of the BNT-xBKT binary solid solution with x ranging from 0.12 to 0.24 using not only routine X-ray diffraction and weak-signal dielectric characterization, but also temperature-dependent polarization versus electric field (P-E) and current versus electric field (I-E) curves. Our results indicate an optimal Na/K ratio of 81/19 based on high-field polarization and electrostrain characterizations. As the temperature increased above 100 °C, the x = 0.19 composition produces ultrahigh electrostrains (> 0.5%) with high thermal stability. The ultrahigh and stable electrostrains were primarily due to the combined effect of electric-field-induced relaxor-to-ferroelectric phase transition and ferroelectric-to-relaxor diffuse phase transition during heating. More specifically, we revealed the relationship between phase evolution and electrostrain responses based on the characteristic temperatures determined by both weak-field dielectric and high-field ferroelectric/electromechanical property characterizations. This work not only clarifies the phase evolution in BNT-xBKT binary solid solution, but also paves the way for future strain enhancement through doping strategies. © 2021 The Chinese Ceramic Society.en
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (Grant Nos. 51772239 and 51761145024 ) and the Fundamental Research Funds for the Central Universities ( XJTU ). The SEM work was done at International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherChinese Ceramic Societyen1
dc.publisherElsevier BVen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ. Materiomics2
dc.sourceJournal of Materiomicsen
dc.subjectBKTen
dc.subjectBNTen
dc.subjectELECTROSTRAINen
dc.subjectPHASE DIAGRAMen
dc.subjectPHASE EVOLUTIONen
dc.subjectRELAXOR FERROELECTRICen
dc.titlePhase Evolution and Relaxor to Ferroelectric Phase Transition Boosting Ultrahigh Electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 Solid Solutionsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.jmat.2021.09.002-
dc.identifier.scopus85116705341-
local.contributor.employeeJing, R., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Zhang, L., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Hu, Q., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Alikin, D.O., School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation; Shur, V.Y., School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation; Wei, X., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Zhang, L., MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Liu, G., School of Materials and Energy, Southwest University, Chongqing, 400715, China; Zhang, H., School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Jin, L., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, Chinaen
local.description.firstpage335-
local.description.lastpage346-
local.issue2-
local.volume8-
dc.identifier.wos000759177900012-
local.contributor.departmentElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; School of Materials and Energy, Southwest University, Chongqing, 400715, China; School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, Chinaen
local.identifier.pure29724414-
local.identifier.eid2-s2.0-85116705341-
local.identifier.wosWOS:000759177900012-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85116705341.pdf5,63 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.