Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111986
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Jing, R. | en |
dc.contributor.author | Zhang, L. | en |
dc.contributor.author | Hu, Q. | en |
dc.contributor.author | Alikin, D. O. | en |
dc.contributor.author | Shur, V. Y. | en |
dc.contributor.author | Wei, X. | en |
dc.contributor.author | Zhang, L. | en |
dc.contributor.author | Liu, G. | en |
dc.contributor.author | Zhang, H. | en |
dc.contributor.author | Jin, L. | en |
dc.contributor.author | Шур, В. Я. | ru |
dc.date.accessioned | 2022-05-12T08:26:42Z | - |
dc.date.available | 2022-05-12T08:26:42Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Phase Evolution and Relaxor to Ferroelectric Phase Transition Boosting Ultrahigh Electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 Solid Solutions / R. Jing, L. Zhang, Q. Hu et al. // Journal of Materiomics. — 2022. — Vol. 8. — Iss. 2. — P. 335-346. | en |
dc.identifier.issn | 2352-8478 | - |
dc.identifier.other | All Open Access, Gold | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111986 | - |
dc.description.abstract | Owing to the complex composition architecture of these solid solutions, some fundamental issues of the classical (1−x)Bi1/2Na1/2TiO-xBi1/2K1/2TiO3 (BNT-xBKT) binary system, such as details of phase evolution and optimal Na/K ratio associated with the highest strain responses, remain unresolved. In this work, we systematically investigated the phase evolution of the BNT-xBKT binary solid solution with x ranging from 0.12 to 0.24 using not only routine X-ray diffraction and weak-signal dielectric characterization, but also temperature-dependent polarization versus electric field (P-E) and current versus electric field (I-E) curves. Our results indicate an optimal Na/K ratio of 81/19 based on high-field polarization and electrostrain characterizations. As the temperature increased above 100 °C, the x = 0.19 composition produces ultrahigh electrostrains (> 0.5%) with high thermal stability. The ultrahigh and stable electrostrains were primarily due to the combined effect of electric-field-induced relaxor-to-ferroelectric phase transition and ferroelectric-to-relaxor diffuse phase transition during heating. More specifically, we revealed the relationship between phase evolution and electrostrain responses based on the characteristic temperatures determined by both weak-field dielectric and high-field ferroelectric/electromechanical property characterizations. This work not only clarifies the phase evolution in BNT-xBKT binary solid solution, but also paves the way for future strain enhancement through doping strategies. © 2021 The Chinese Ceramic Society. | en |
dc.description.sponsorship | This work was supported by the National Natural Science Foundation of China (Grant Nos. 51772239 and 51761145024 ) and the Fundamental Research Funds for the Central Universities ( XJTU ). The SEM work was done at International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Chinese Ceramic Society | en1 |
dc.publisher | Elsevier BV | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | J. Materiomics | 2 |
dc.source | Journal of Materiomics | en |
dc.subject | BKT | en |
dc.subject | BNT | en |
dc.subject | ELECTROSTRAIN | en |
dc.subject | PHASE DIAGRAM | en |
dc.subject | PHASE EVOLUTION | en |
dc.subject | RELAXOR FERROELECTRIC | en |
dc.title | Phase Evolution and Relaxor to Ferroelectric Phase Transition Boosting Ultrahigh Electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 Solid Solutions | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.jmat.2021.09.002 | - |
dc.identifier.scopus | 85116705341 | - |
local.contributor.employee | Jing, R., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Zhang, L., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Hu, Q., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Alikin, D.O., School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation; Shur, V.Y., School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation; Wei, X., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Zhang, L., MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Liu, G., School of Materials and Energy, Southwest University, Chongqing, 400715, China; Zhang, H., School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Jin, L., Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China | en |
local.description.firstpage | 335 | - |
local.description.lastpage | 346 | - |
local.issue | 2 | - |
local.volume | 8 | - |
dc.identifier.wos | 000759177900012 | - |
local.contributor.department | Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russian Federation; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; School of Materials and Energy, Southwest University, Chongqing, 400715, China; School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China | en |
local.identifier.pure | 29724414 | - |
local.identifier.eid | 2-s2.0-85116705341 | - |
local.identifier.wos | WOS:000759177900012 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85116705341.pdf | 5,63 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.