Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111823
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHan, D.en
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorGavrilova, A.en
dc.contributor.authorFedotov, S.en
dc.date.accessioned2022-05-12T08:23:41Z-
dc.date.available2022-05-12T08:23:41Z-
dc.date.issued2021-
dc.identifier.citationAnomalous Stochastic Transport of Particles with Self-Reinforcement and Mittag–Leffler Distributed Rest Times / D. Han, D. V. Alexandrov, A. Gavrilova et al. // Fractal and Fractional. — 2021. — Vol. 5. — Iss. 4. — 221.en
dc.identifier.issn2504-3110-
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111823-
dc.description.abstractWe introduce a persistent random walk model for the stochastic transport of particles involving self-reinforcement and a rest state with Mittag–Leffler distributed residence times. The model involves a system of hyperbolic partial differential equations with a non-local switching term described by the Riemann–Liouville derivative. From Monte Carlo simulations, we found that this model generates superdiffusion at intermediate times but reverts to subdiffusion in the long time asymptotic limit. To confirm this result, we derived the equation for the second moment and find that it is subdiffusive in the long time limit. Analyses of two simpler models are also included, which demonstrate the dominance of the Mittag–Leffler rest state leading to subdiffusion. The observation that transient superdiffusion occurs in an eventually subdiffusive system is a useful feature for applications in stochastic biological transport. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipD.H. was funded by the Wellcome Trust, grant number 215189/Z/19/Z. D.V.A. was funded by the Ministry of Science and Higher Education of the Russian Federation (grant number 075-15-2021-1002). A.G. was funded by the Wellcome Trust, grant number 108867/Z/15/Z. S.F. was funded by the EPSRC, grant number EP/V008641/1.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen1
dc.publisherMDPI AGen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceFractal Fract.2
dc.sourceFractal and Fractionalen
dc.subjectANOMALOUS STOCHASTIC TRANSPORTen
dc.subjectMITTAG–LEFFLER DISTRIBUTED REST STATEen
dc.subjectSELF-REINFORCEMENTen
dc.subjectSUBDIFFUSIONen
dc.titleAnomalous Stochastic Transport of Particles with Self-Reinforcement and Mittag–Leffler Distributed Rest Timesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi47533019-
dc.identifier.doi10.3390/fractalfract5040221-
dc.identifier.scopus85120046349-
local.contributor.employeeHan, D., Department of Mathematics, University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom, Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom; Alexandrov, D.V., Department of Theoretical and Mathematical Physics, Ural Federal University, 51 Lenin Ave, Ekaterinburg, 620000, Russian Federation; Gavrilova, A., School of Biological Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom; Fedotov, S., Department of Mathematics, University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdomen
local.issue4-
local.volume5-
dc.identifier.wos000736675600001-
local.contributor.departmentDepartment of Mathematics, University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom; Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom; Department of Theoretical and Mathematical Physics, Ural Federal University, 51 Lenin Ave, Ekaterinburg, 620000, Russian Federation; School of Biological Sciences, University of Manchester, Manchester, M13 9PL, United Kingdomen
local.identifier.pure29067123-
local.description.order221-
local.identifier.eid2-s2.0-85120046349-
local.identifier.wosWOS:000736675600001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85120046349.pdf762,15 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.