Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111803
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Ivanko, E. | en |
dc.contributor.author | Chernoskutov, M. | en |
dc.date.accessioned | 2022-05-12T08:23:10Z | - |
dc.date.available | 2022-05-12T08:23:10Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Ivanko E. The Random Plots Graph Generation Model for Studying Systems with Unknown Connection Structures / E. Ivanko, M. Chernoskutov // Entropy. — 2022. — Vol. 24. — Iss. 2. — 297. | en |
dc.identifier.issn | 1099-4300 | - |
dc.identifier.other | All Open Access, Gold, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111803 | - |
dc.description.abstract | We consider the problem of modeling complex systems where little or nothing is known about the structure of the connections between the elements. In particular, when such systems are to be modeled by graphs, it is unclear what vertex degree distributions these graphs should have. We propose that, instead of attempting to guess the appropriate degree distribution for a poorly under-stood system, one should model the system via a set of sample graphs whose degree distributions cover a representative range of possibilities and account for a variety of possible connection structures. To construct such a representative set of graphs, we propose a new random graph generator, Random Plots, in which we (1) generate a diversified set of vertex degree distributions and (2) target a graph generator at each of the constructed distributions, one-by-one, to obtain the ensemble of graphs. To assess the diversity of the resulting ensembles, we (1) substantialize the vague notion of diversity in a graph ensemble as the diversity of the numeral characteristics of the graphs within this ensemble and (2) compare such formalized diversity for the proposed model with that of three other common models (Erdős–Rényi–Gilbert (ERG), scale-free, and small-world). Computational experiments show that, in most cases, our approach produces more diverse sets of graphs compared with the three other models, including the entropy-maximizing ERG. The corresponding Python code is available at GitHub. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en1 |
dc.publisher | MDPI AG | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Entropy | 2 |
dc.source | Entropy | en |
dc.subject | DEGREE DISTRIBUTION | en |
dc.subject | DEGREE SEQUENCE | en |
dc.subject | NETWORK | en |
dc.subject | OMPLEX SYSTEM | en |
dc.subject | RANDOM GRAPH | en |
dc.title | The Random Plots Graph Generation Model for Studying Systems with Unknown Connection Structures | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/e24020297 | - |
dc.identifier.scopus | 85125172456 | - |
local.contributor.employee | Ivanko, E., Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620990, Russian Federation; Chernoskutov, M., Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620990, Russian Federation, Institute of Natural Sciences and Mathematics of the Ural Federal University, Ekaterinburg, 620075, Russian Federation | en |
local.issue | 2 | - |
local.volume | 24 | - |
dc.identifier.wos | 000824078800001 | - |
local.contributor.department | Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620990, Russian Federation; Institute of Natural Sciences and Mathematics of the Ural Federal University, Ekaterinburg, 620075, Russian Federation | en |
local.identifier.pure | 29726113 | - |
local.description.order | 297 | - |
local.identifier.eid | 2-s2.0-85125172456 | - |
local.identifier.wos | WOS:000824078800001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85125172456.pdf | 1,64 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.