Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111799
Title: Analysis of Transient Recovery Voltage and Secondary arc Current in Transposed Extra-High Voltage Lines in a Two-Phase Auto-Reclosing
Authors: Makhmudov, K.
Krasilnikova, T.
Safaraliev, M.
Kokin, S.
Ghulomzoda, A.
Dmitriev, S.
Issue Date: 2021
Publisher: Elsevier Ltd
Elsevier BV
Citation: Analysis of Transient Recovery Voltage and Secondary arc Current in Transposed Extra-High Voltage Lines in a Two-Phase Auto-Reclosing / K. Makhmudov, T. Krasilnikova, M. Safaraliev et al. // Energy Reports. — 2021. — Vol. 7. — P. 56-64.
Abstract: Extra-high voltage (EHV) lines of 500–750 kV, providing transmission of electricity over long distances and at the same time performing the functions of intersystem communication at the level of the national power system, play an important role not only in normal modes, but also in emergency modes, ensuring the dynamic stability of the power system as a whole. In these lines, the overwhelming proportion of power cuts are caused by single-phase short circuits (90%), a significant part of which, being unstable arc faults, are successfully eliminated in the single-phase auto-reclosing cycle. Also, about 5%–10% of failures can be constituted by two-phase short circuits, which can be eliminated in a two-phase auto-reclosing cycle (TPhAR). The purpose of this paper is to study two-phase auto-reclosing in transposed EHV lines equipped with four-radial shunt reactors (ShR). The paper analyzes the efficiency of using a two-phase auto-reclosing to eliminate two-phase short-circuits in the lines connecting the power systems of Kyrgyzstan and Tajikistan. An algorithm is proposed for calculating the transient recovering voltages (TRV) and secondary arc currents (SAC) in the real transposed line Datka–Khujand–Dushanbe. The obtained results of TRV and SAC, which are within the permissible limits for the Dushanbe–Khujand line section, make it possible to have a dead time of TPhAR of no more than 0.6 s, in order to maintain the dynamic stability of the power system. For lines with a length of about 500 km (Datka–Khujand), equipped with three reactors, a successful TPhAR is impossible due to the appearance of resonant TRV in the circuit. The paper proposes the use of banks of capacitors connected in series in the phases of the ShR for the implementation of a successful TPhAR with the duration of the required pause of about 0.6 s. © 2021 The Authors.
Keywords: DEAD TIME
EXTRA-HIGH VOLTAGE LINE
FOUR-RADIAL SHUNT REACTORS
SECONDARY ARC CURRENT
TRANSIENT RECOVERY VOLTAGE
TRANSPOSED LINE
TWO-PHASE AUTO-RECLOSING
ELECTRIC POWER TRANSMISSION
POWER QUALITY
SYSTEM STABILITY
TRANSIENTS
AUTORECLOSING
DEAD TIME
EXTRA HIGH VOLTAGE
EXTRA-HIGH VOLTAGE LINE
FOUR-RADIAL SHUNT REACTOR
HIGH VOLTAGE LINE
SECONDARY ARC CURRENT
SHUNT REACTORS
TRANSIENT RECOVERY VOLTAGE
TRANSPOSED LINE
TWO PHASE
RECOVERY
URI: http://hdl.handle.net/10995/111799
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85122610886
PURE ID: 29149762
ISSN: 2352-4847
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85122610886.pdf1,49 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.