Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111774
Title: The Lower Domination Parameters in Inflation of Graphs of Radius 1
Authors: Kabanov, V.
Vakula, I.
Issue Date: 2004
Publisher: Elsevier BV
Citation: Kabanov V. The Lower Domination Parameters in Inflation of Graphs of Radius 1 / V. Kabanov, I. Vakula // Discrete Mathematics. — 2004. — Vol. 276. — Iss. 1-3. — P. 269-272.
Abstract: The inflation GI of a graph G is the line graph of the subdivision of G. If G is a complete graph the equality ir(GI) = γ(GI) was proved by Favaron in 1998. We conjectured that the equality holds when G is any graph of radius 1. But it turned out that it is not true. Moreover, we proved that for the class of radius 1 graphs there does not exist a better upper bound for the relation γ(GI)/ir(G I) then 32. We found also a sufficient condition for the equality γ(GI)=ir(GI). © 2003 Elsevier B.V. All rights reserved.
Keywords: CLAW-FREE GRAPHS
INFLATIONS
LOWER DOMINATION PARAMETERS
COMPUTER SIMULATION
SET THEORY
THEOREM PROVING
TREES (MATHEMATICS)
CLAW FREE GRAPHS
INFLATED GRAPHS
LOWER DOMINATION PARAMETERS
GRAPH THEORY
URI: http://hdl.handle.net/10995/111774
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 0347415778
ISSN: 0012-365X
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-0347415778.pdf170,68 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.