Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111718
Title: Application of the Nelder–Mead Method for Optimizing a Synchronous Homopolar Motor for a Mining Dump Truck
Other Titles: Применение метода Нелдера–Мида для оптимизации одноименнополюсного синхронного двигателя для карьерного самосвала
Authors: Prakht, V. A.
Dmitrievskii, V. A.
Anuchin, A. S.
Kazakbaev, V. M.
Issue Date: 2022
Publisher: Tomsk Polytechnic University, Publishing House
National Research Tomsk Polytechnic University
Citation: Application of the Nelder–Mead Method for Optimizing a Synchronous Homopolar Motor for a Mining Dump Truck [Применение метода Нелдера–Мида для оптимизации одноименнополюсного синхронного двигателя для карьерного самосвала] / V. A. Prakht, V. A. Dmitrievskii, A. S. Anuchin et al. // Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. — 2022. — Vol. 333. — Iss. 1. — P. 134-144.
Abstract: The relevance of the study is in the increasing need for the use of mining dump trucks with a diesel-electric (hybrid) drive for the development of minerals. Improving the operational and cost characteristics of the electric drive of mining dump trucks helps to reduce costs in the development of minerals. The main aim of the study is to find an effective approach to optimizing a synchronous homopolar motor for driving the rear wheels of a mining dump truck, which makes it possible to solve the problem of the high demand for computing resources when simulating a three-dimensional magnetic field of the motor; develop the recommendations for the design of a synchronous homopolar motor with an excitation winding on the stator; apply the optimization to reduce power losses and maximum motor current for a given traction characteristic of the drive, and to reduce the current rating and cost of the semiconductor inverter module of the electric drive of a mining dump truck with the type of motor under consideration. Object of the research is a design of a six-pole nine-phase synchronous homopolar motor with an excitation winding on the stator with a power rating of 370 kW. Methods: derivative-free optimization method; equivalent circuit method; mathematical modeling; two-dimensional finite element method. Results. A novel approach to optimization of a synchronous homopolar motor is proposed. This approach is effective from the point of view of the accuracy of calculating the characteristics and computational costs. As a result of optimization, the motor losses and the maximum current required by the motor from the inverter have been significantly reduced. The achieved reduction of the motor current allows reducing the cost of the semiconductor modules of the inverter by 1,4 times (by 2295 United States dollars), and also allows reducing the alternating component in the current of the direct current link of the inverter by the same amount. © 2022 Tomsk Polytechnic University, Publishing House. All rights reserved.
Keywords: MINING DUMP TRUCK
NELDER–MEAD METHOD
OPTIMAL DESIGN
SYNCHRONOUS HOMOPOLAR MOTOR
TRACTION DRIVES
TRACTION MOTOR
URI: http://hdl.handle.net/10995/111718
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85124709530
PURE ID: 29639935
ISSN: 2500-1019
metadata.dc.description.sponsorship: The research was performed with the support of the Russian Science Foundation grant (Project No. 21-19-00696).
RSCF project card: 21-19-00696
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85124709530.pdf1,09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.