Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111694
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKāle, M.en
dc.contributor.authorAgbozo, E.en
dc.date.accessioned2022-05-12T08:20:55Z-
dc.date.available2022-05-12T08:20:55Z-
dc.date.issued2021-
dc.identifier.citationKāle M. Utility of Large-scale Recipe Data in Food Computing / M. Kāle, E. Agbozo. — DOI 10.3390/quat4040032 // Baltic Journal of Modern Computing. — 2021. — Vol. 9. — Iss. 2. — P. 155-165.en
dc.identifier.issn2255-8942-
dc.identifier.otherAll Open Access, Gold3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111694-
dc.description.abstractThis article aims to look at the recipe data analysis from a critical perspective, offering the authors’ own learning experience from successes and failures of the research process. The present recipe research has been limited by the availability of data, which in the case of recipes mostly consists of texts depicting a variety of ingredients. This has contributed to a better understanding of flavour formation and nutritional value of food but has not led further to establishing a corpus of healthy and unhealthy foods. Time-related cooking aspects have remained largely out of the present research’s scope due to the difficulties in obtaining immediately analyzable data. The same goes for the recipe-relate research on food texture, color and other aspects. In this research the methodology of topic modelling has been applied to analyze recipes in North American and Mexican cuisines in order to highlight the core culinary themes within these two cuisines. Potential for result analysis, as well as its limitations, are also discussed. Topic models of agglomerated data can be helpful in further multisensory research, as they provide some insights into the colour, the flavour and, potentially, the texture of certain groups of dishes. It can be combined further on with social media sentiment analysis and other research methods to better grasp the human relationship with food. © 2021 Baltic Journal of Modern Computing. All rights Reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherUniversity of Latviaen1
dc.publisherUniversity of Latviaen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceBaltic J. Mod. Comp.2
dc.sourceBaltic Journal of Modern Computingen
dc.subjectFOOD COMPUTINGen
dc.subjectHEALTHY FOODen
dc.subjectMULTISENSORY RESEARCHen
dc.subjectNLPen
dc.subjectRECIPESen
dc.subjectTOPIC MODELLINGen
dc.titleUtility of Large-scale Recipe Data in Food Computingen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi46901655-
dc.identifier.doi10.22364/BJMC.2021.9.2.01-
dc.identifier.scopus85109959710-
local.contributor.employeeKāle, M., Faculty of Computing, University of Latvia, 19 Raina Blvd., Riga, LV-1586, Latvia; Agbozo, E., Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russian Federationen
local.description.firstpage155-
local.description.lastpage165-
local.issue2-
local.volume9-
dc.identifier.wos000665758600001-
local.contributor.departmentFaculty of Computing, University of Latvia, 19 Raina Blvd., Riga, LV-1586, Latvia; Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russian Federationen
local.identifier.pure22833983-
local.identifier.eid2-s2.0-85109959710-
local.identifier.wosWOS:000665758600001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85109959710.pdf535,7 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.