Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111620
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorVobornik, I.en
dc.contributor.authorSarkar, A. B.en
dc.contributor.authorZhang, L.en
dc.contributor.authorBoukhvalov, D. W.en
dc.contributor.authorGhosh, B.en
dc.contributor.authorPiliai, L.en
dc.contributor.authorKuo, C. -N.en
dc.contributor.authorMondal, D.en
dc.contributor.authorFujii, J.en
dc.contributor.authorLue, C. S.en
dc.contributor.authorVorokhta, M.en
dc.contributor.authorXing, H.en
dc.contributor.authorWang, L.en
dc.contributor.authorAgarwal, A.en
dc.contributor.authorPolitano, A.en
dc.date.accessioned2022-05-12T08:19:46Z-
dc.date.available2022-05-12T08:19:46Z-
dc.date.issued2021-
dc.identifier.citationKitkaite NiTeSe, an Ambient-Stable Layered Dirac Semimetal with Low-Energy Type-II Fermions with Application Capabilities in Spintronics and Optoelectronics / I. Vobornik, A. B. Sarkar, L. Zhang et al. // Advanced Functional Materials. — 2021. — Vol. 31. — Iss. 52. — 2106101.en
dc.identifier.issn1616-301X-
dc.identifier.otherAll Open Access, Hybrid Gold3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111620-
dc.description.abstractThe emergence of Dirac semimetals has stimulated growing attention, owing to the considerable technological potential arising from their peculiar exotic quantum transport related to their nontrivial topological states. Especially, materials showing type-II Dirac fermions afford novel device functionalities enabled by anisotropic optical and magnetotransport properties. Nevertheless, real technological implementation has remained elusive so far. Definitely, in most Dirac semimetals, the Dirac point lies deep below the Fermi level, limiting technological exploitation. Here, it is shown that kitkaite (NiTeSe) represents an ideal platform for type-II Dirac fermiology based on spin-resolved angle-resolved photoemission spectroscopy and density functional theory. Precisely, the existence of type-II bulk Dirac fermions is discovered in NiTeSe around the Fermi level and the presence of topological surface states with strong (≈50%) spin polarization. By means of surface-science experiments in near-ambient pressure conditions, chemical inertness towards ambient gases (oxygen and water) is also demonstrated. Correspondingly, NiTeSe-based devices without encapsulation afford long-term efficiency, as demonstrated by the direct implementation of a NiTeSe-based microwave receiver with a room-temperature photocurrent of 2.8 µA at 28 GHz and more than two orders of magnitude linear dynamic range. The findings are essential to bringing to fruition type-II Dirac fermions in photonics, spintronics, and optoelectronics. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.en
dc.description.sponsorshipI.V., A.B.S., and L.Z. contributed equally to this work. L.W. acknowledged support from the State Key Program for Basic Research of China (No. 2017YFA0305500, 2018YFA0306204), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the Science and Technology Commission of Shanghai Municipality (21ZR1473800). A.P. thanks CERIC‐ERIC for the access to the NAP‐XPS facility. D.W.B. acknowledged support from the Ministry of Science and Higher Education of the Russian Federation (through the basic part of the government mandate, Project No. FEUZ‐2020‐0060) and Jiangsu Innovative and Entrepreneurial Talents Project. This work has been partly performed in the framework of the nanoscience foundry and fine analysis (NFFA‐MUR Italy Progetti Internazionali) facility. A.B, B.G, and A.A. acknowledge funding from Science and Engineering Research Board (SERB) and Department of Science and Technology (DST), government of India. A.A. thanks the HPC facility at IIT Kanpur for computational resources.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherJohn Wiley and Sons Incen1
dc.publisherWileyen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAdv. Funct. Mater.2
dc.sourceAdvanced Functional Materialsen
dc.subjectDENSITY FUNCTIONAL THEORY CALCULATIONSen
dc.subjectDEVICE IMPLEMENTATIONen
dc.subjectDIRAC FERMIONSen
dc.subjectSURFACE SCIENCEen
dc.subjectTOPOLOGICAL MATERIALSen
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.subjectFERMI LEVELen
dc.subjectFUNCTIONAL MATERIALSen
dc.subjectPHOTOELECTRON SPECTROSCOPYen
dc.subjectQUANTUM CHEMISTRYen
dc.subjectSPINTRONICSen
dc.subjectTOPOLOGYen
dc.subjectAMBIENTSen
dc.subjectAPPLICATION CAPABILITYen
dc.subjectDENSITY-FUNCTIONAL THEORY CALCULATIONSen
dc.subjectDEVICE IMPLEMENTATIONen
dc.subjectDIRAC FERMIONSen
dc.subjectLOWER ENERGIESen
dc.subjectQUANTUM TRANSPORTen
dc.subjectSURFACE SCIENCEen
dc.subjectTOPOLOGICAL MATERIALSen
dc.subjectTYPE IIen
dc.subjectSPIN POLARIZATIONen
dc.titleKitkaite NiTeSe, an Ambient-Stable Layered Dirac Semimetal with Low-Energy Type-II Fermions with Application Capabilities in Spintronics and Optoelectronicsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi47076934-
dc.identifier.doi10.1002/adfm.202106101-
dc.identifier.scopus85115715421-
local.contributor.employeeVobornik, I., CNR-IOM, TASC Laboratory, Area Science Park-Basovizza, Trieste, 34139, Italy; Sarkar, A.B., Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Zhang, L., State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-tian Road, Shanghai, 200083, China, Department of Optoelectronic Science and Engineering, Donghua University, Shanghai, 201620, China; Boukhvalov, D.W., College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, China, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation; Ghosh, B., Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Piliai, L., Department of Surface and Plasma Science Prague, Charles University, V Holesovickaˇch 2, Prague 8, Prague, 18000, Czech Republic; Kuo, C.-N., Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan, Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei, 10601, Taiwan; Mondal, D., CNR-IOM, TASC Laboratory, Area Science Park-Basovizza, Trieste, 34139, Italy; Fujii, J., CNR-IOM, TASC Laboratory, Area Science Park-Basovizza, Trieste, 34139, Italy; Lue, C.S., Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan, Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei, 10601, Taiwan; Vorokhta, M., Department of Surface and Plasma Science Prague, Charles University, V Holesovickaˇch 2, Prague 8, Prague, 18000, Czech Republic; Xing, H., Department of Optoelectronic Science and Engineering, Donghua University, Shanghai, 201620, China; Wang, L., State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-tian Road, Shanghai, 200083, China; Agarwal, A., Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Politano, A., INSTM and Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, L'Aquila, AQ 67100, Italy, CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, Catania, I-95121, Italyen
local.issue52-
local.volume31-
dc.identifier.wos000699899600001-
local.contributor.departmentCNR-IOM, TASC Laboratory, Area Science Park-Basovizza, Trieste, 34139, Italy; Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India; State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-tian Road, Shanghai, 200083, China; Department of Optoelectronic Science and Engineering, Donghua University, Shanghai, 201620, China; College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, China; Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation; Department of Surface and Plasma Science Prague, Charles University, V Holesovickaˇch 2, Prague 8, Prague, 18000, Czech Republic; Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan; Taiwan Consortium of Emergent Crystalline Materials, Ministry of Science and Technology, Taipei, 10601, Taiwan; INSTM and Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, L'Aquila, AQ 67100, Italy; CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, Catania, I-95121, Italyen
local.identifier.pure29212887-
local.description.order2106101-
local.identifier.eid2-s2.0-85115715421-
local.identifier.wosWOS:000699899600001-
local.fund.feuzFEUZ‐2020‐0060-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85115715421.pdf3,12 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.