Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111615
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHe, Y.en
dc.contributor.authorSchneider, S.en
dc.contributor.authorHelm, T.en
dc.contributor.authorGayles, J.en
dc.contributor.authorWolf, D.en
dc.contributor.authorSoldatov, I.en
dc.contributor.authorBorrmann, H.en
dc.contributor.authorSchnelle, W.en
dc.contributor.authorSchaefer, R.en
dc.contributor.authorFecher, G. H.en
dc.contributor.authorRellinghaus, B.en
dc.contributor.authorFelser, C.en
dc.date.accessioned2022-05-12T08:19:44Z-
dc.date.available2022-05-12T08:19:44Z-
dc.date.issued2022-
dc.identifier.citationTopological Hall effect arising from the mesoscopic and microscopic non-coplanar magnetic structure in MnBi / Y. He, S. Schneider, T. Helm et al. // Acta Materialia. — 2022. — Vol. 226. — 117619.en
dc.identifier.issn1359-6454-
dc.identifier.otherAll Open Access, Hybrid Gold, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111615-
dc.description.abstractThe topological Hall effect (THE), induced by the Berry curvature that originates from non-zero scalar spin chirality, is an important feature for mesoscopic topological structures, such as skyrmions. However, the THE might also arise from other microscopic non-coplanar spin structures in the lattice. Thus, the origin of the THE inevitably needs to be determined to fully understand skyrmions and find new host materials. Here, we examine the Hall effect in both, bulk- and micron-sized lamellar samples of MnBi. The sample size affects the temperature and field range in which the THE is detectable. Although a bulk sample exhibits the THE only upon exposure to weak fields in the easy-cone state, in micron-sized lamella the THE exists across a wide temperature range and occurs at fields near saturation. Our results show that both the non-coplanar spin structure in the lattice and topologically non-trivial skyrmion bubbles are responsible for the THE, and that the dominant mechanism depends on the sample size. Hence, the magnetic phase diagram for MnBi is size-dependent. Our study provides an example in which the THE is simultaneously induced by two mechanisms, and builds a bridge between mesoscopic and microscopic magnetic structures. © 2022.en
dc.description.sponsorshipThis work was financially supported by an Advanced Grant from the European Research Council (No. 742068 ) “TOPMAT,” the European Union's Horizon 2020 research and innovation programme (No. 824123 ) “SKYTOP,” the European Union's Horizon 2020 research and innovation programme (No. 766566 ) “ASPIN,” the Deutsche Forschungsgemeinschaft (Project-ID 258499086) “SFB 1143,” the Deutsche Forschungsgemeinschaft (Project-IDs FE 633/30-1, RE 1164/6-1 and LU 2261/2-1) “SPP Skyrmionics,” the DFG through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (EXC 2147, Project-ID 39085490). I.S. is grateful to Deutsche Forschungsgemeinschaft for supporting this work through project SO 1623/2-1. D.W. has received funding from the European Research Council (ERC) under the Horizon 2020 research and innovation program of the European Union (grant agreement number 715620 ).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherActa Materialia Incen1
dc.publisherElsevier BVen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceActa Mater2
dc.sourceActa Materialiaen
dc.subjectMNBIen
dc.subjectNONCOPLANAR SPIN STRUCTUREen
dc.subjectSKYRMION BUBBLEen
dc.subjectTOPOLOGICAL HALL EFFECTen
dc.subjectBINARY ALLOYSen
dc.subjectBISMUTH ALLOYSen
dc.subjectSPIN HALL EFFECTen
dc.subjectSUPERCONDUCTING MATERIALSen
dc.subjectTOPOLOGYen
dc.subjectIMPORTANT FEATURESen
dc.subjectMESOSCOPICSen
dc.subjectNON-COPLANARen
dc.subjectNONCOPLANAR SPIN STRUCTUREen
dc.subjectSAMPLE SIZESen
dc.subjectSKYRMION BUBBLEen
dc.subjectSKYRMIONSen
dc.subjectSPIN CHIRALITYen
dc.subjectSPIN STRUCTURESen
dc.subjectTOPOLOGICAL HALL EFFECTen
dc.subjectMANGANESE ALLOYSen
dc.titleTopological Hall effect arising from the mesoscopic and microscopic non-coplanar magnetic structure in MnBien
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.actamat.2022.117619-
dc.identifier.scopus85122485930-
local.contributor.employeeHe, Y., Max-Planck-Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Schneider, S., Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TU DresdenDresden, 01062, Germany, Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtz strasse 20, Dresden, D-01069, Germany; Helm, T., Max-Planck-Institute for Chemical Physics of Solids, Dresden, D-01187, Germany, Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden–Rossendorf, Dresden, 01328, Germany; Gayles, J., Max-Planck-Institute for Chemical Physics of Solids, Dresden, D-01187, Germany, Department of Physics, University of South Florida, Tampa, FL 33620, United States; Wolf, D., Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtz strasse 20, Dresden, D-01069, Germany; Soldatov, I., Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtz strasse 20, Dresden, D-01069, Germany, Institute of Natural Sciences and Mathematic, Ural Federal University, Yekaterinburg, 620075, Russian Federation; Borrmann, H., Max-Planck-Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Schnelle, W., Max-Planck-Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Schaefer, R., Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtz strasse 20, Dresden, D-01069, Germany, Institute for Materials Science, TU Dresden, Dresden, D-01062, Germany; Fecher, G.H., Max-Planck-Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Rellinghaus, B., Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TU DresdenDresden, 01062, Germany; Felser, C., Max-Planck-Institute for Chemical Physics of Solids, Dresden, D-01187, Germanyen
local.volume226-
dc.identifier.wos000804680600008-
local.contributor.departmentMax-Planck-Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TU DresdenDresden, 01062, Germany; Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtz strasse 20, Dresden, D-01069, Germany; Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden–Rossendorf, Dresden, 01328, Germany; Department of Physics, University of South Florida, Tampa, FL 33620, United States; Institute for Materials Science, TU Dresden, Dresden, D-01062, Germany; Institute of Natural Sciences and Mathematic, Ural Federal University, Yekaterinburg, 620075, Russian Federationen
local.identifier.pure29375965-
local.description.order117619-
local.identifier.eid2-s2.0-85122485930-
local.fund.cordisH2020: 715620-
local.identifier.wosWOS:000804680600008-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85122485930.pdf3,55 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.