Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111587
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Mokrii, I. | en |
dc.contributor.author | Boytsov, L. | en |
dc.contributor.author | Braslavski, P. | en |
dc.date.accessioned | 2022-05-12T08:19:25Z | - |
dc.date.available | 2022-05-12T08:19:25Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Mokrii I. A Systematic Evaluation of Transfer Learning and Pseudo-labeling with BERT-based Ranking Models / I. Mokrii, L. Boytsov, P. Braslavski // SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. — 2021. — Vol. — P. 2081-2085. — 3463093. | en |
dc.identifier.isbn | 9781450380379 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111587 | - |
dc.description.abstract | Due to high annotation costs making the best use of existing human-created training data is an important research direction. We, therefore, carry out a systematic evaluation of transferability of BERT-based neural ranking models across five English datasets. Previous studies focused primarily on zero-shot and few-shot transfer from a large dataset to a dataset with a small number of queries. In contrast, each of our collections has a substantial number of queries, which enables a full-shot evaluation mode and improves reliability of our results. Furthermore, since source datasets licences often prohibit commercial use, we compare transfer learning to training on pseudo-labels generated by a BM25 scorer. We find that training on pseudo-labels - -possibly with subsequent fine-tuning using a modest number of annotated queries - -can produce a competitive or better model compared to transfer learning. Yet, it is necessary to improve the stability and/or effectiveness of the few-shot training, which, sometimes, can degrade performance of a pretrained model. © 2021 ACM. | en |
dc.description.sponsorship | Pavel Braslavski thanks the Ministry of Science and Higher Education of the Russian Federation (“Ural Mathematical Center” project). | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Association for Computing Machinery, Inc | en1 |
dc.publisher | ACM | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | SIGIR - Proc. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr. | 2 |
dc.source | SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval | en |
dc.subject | NEURAL INFORMATION RETRIEVAL | en |
dc.subject | PSEUDO-LABELING | en |
dc.subject | TRANSFER LEARNING | en |
dc.subject | INFORMATION RETRIEVAL | en |
dc.subject | LARGE DATASET | en |
dc.subject | LEARNING SYSTEMS | en |
dc.subject | TRANSFER LEARNING | en |
dc.subject | EVALUATION MODES | en |
dc.subject | FINE TUNING | en |
dc.subject | RANKING MODEL | en |
dc.subject | SYSTEMATIC EVALUATION | en |
dc.subject | TRAINING DATA | en |
dc.subject | LEARNING TO RANK | en |
dc.title | A Systematic Evaluation of Transfer Learning and Pseudo-labeling with BERT-based Ranking Models | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.conference.name | 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021 | en |
dc.conference.date | 11 July 2021 through 15 July 2021 | - |
dc.identifier.doi | 10.1145/3404835.3463093 | - |
dc.identifier.scopus | 85111638459 | - |
local.contributor.employee | Mokrii, I., Hse University, Moscow, Russian Federation; Boytsov, L., Bosch Center for Artificial Intelligence, Pittsburgh, PA, United States; Braslavski, P., Hse University, Moscow, Russian Federation, Ural Federal University and Hse University, Yekaterinburg, Russian Federation | en |
local.description.firstpage | 2081 | - |
local.description.lastpage | 2085 | - |
dc.identifier.wos | 000719807900251 | - |
local.contributor.department | Hse University, Moscow, Russian Federation; Bosch Center for Artificial Intelligence, Pittsburgh, PA, United States; Ural Federal University and Hse University, Yekaterinburg, Russian Federation | en |
local.identifier.pure | 22990153 | - |
local.description.order | 3463093 | - |
local.identifier.eid | 2-s2.0-85111638459 | - |
local.identifier.wos | WOS:000719807900251 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85111638459.pdf | 579,34 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.