Please use this identifier to cite or link to this item:
Title: Inverse Problems of Graph Theory: Graphs Without Triangles
Other Titles: Обратные задачи в теории графов: графы без треугольников
Authors: Makhnev, A. A.
Belousov, I. N.
Paduchikh, D. V.
Issue Date: 2021
Publisher: Sobolev Institute of Mathematics
Sobolev Institute of Mathematics
Citation: Makhnev A. A. Обратные задачи в теории графов: графы без треугольников [Inverse Problems of Graph Theory: Graphs Without Triangles] / A. A. Makhnev, I. N. Belousov, D. V. Paduchikh // Siberian Electronic Mathematical Reports. — 2021. — Vol. 18. — P. 27-42.
Abstract: Graph r for a distance-regular graph r of diameter 3 can be strongly regular for i 2 or i = 3. Finding intersection array of graph r by t lio parameters of ri is an inverse problem. Earlier direct and inverse problems have been solved by A.A. Makhnev, M.S. Nirova for i = 3 and by A.A. Makhnev and D.V. Paduchikh for i = 2. In this work it is consider the case when graph r3 is strongly regular without triangles and v < 100000. © 2021 Махнев А.А., Белоусов И.Н., Падучих Д.В. All Rights Reserved.
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85104848204
PURE ID: 21045597
ISSN: 1813-3304
metadata.dc.description.sponsorship: Работа выполнена при финансовой поддержке РФФИ и ГФЕН Китая в рамках научного проекта № 20-51-53013.
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85104848204.pdf484,57 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.