Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111582
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhramova, A. P.en
dc.contributor.authorMaslova, N. V.en
dc.contributor.authorPanshin, V. V.en
dc.contributor.authorStaroletov, A. M.en
dc.date.accessioned2022-05-12T08:19:23Z-
dc.date.available2022-05-12T08:19:23Z-
dc.date.issued2021-
dc.identifier.citationCharacterization of Groups E6(3) and 2E6(3) by Gruenberg Kegel Graph / A. P. Khramova, N. V. Maslova, V. V. Panshin et al. // Siberian Electronic Mathematical Reports. — 2021. — Vol. 18. — Iss. 2. — P. 1651-1656.en
dc.identifier.issn1813-3304-
dc.identifier.otherAll Open Access, Bronze, Green3
dc.identifier.urihttp://hdl.handle.net/10995/111582-
dc.description.abstractThe Gruenberg Kegel graph (or the prime graph) Γ(G) of a nite group G is de ned as follows. The vertex set of Γ(G) is the set of all prime divisors of the order of G. Two distinct primes r and s regarded as vertices are adjacent in Γ(G) if and only if there exists an element of order rs in G. Suppose that L =≅ E6(3) or L ≅= 2E6(3). We prove that if G is a nite group such that Γ(G) = Γ(L), then G ≅= L. © 2021 Khramova A.P., Maslova N.V., Panshin V.V., Staroletov A.M. The work is supported by the Mathematical Center in Akademgorodok under the agreement 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation.en
dc.description.sponsorshipThe work is supported by the Mathematical Center in Akademgorodok under the agreement No. 075-15-2019-1675 with the Ministry of Science and Higher Education of the Russian Federation.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSobolev Institute of Mathematicsen1
dc.publisherSobolev Institute of Mathematicsen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceSib. Electron. Math. Rep.2
dc.sourceSiberian Electronic Mathematical Reportsen
dc.subjectEXCEPTIONAL GROUP OF LIE TYPE E6en
dc.subjectFINITE GROUPen
dc.subjectSIMPLE GROUPen
dc.subjectTHE GRUENBERGKEGEL GRAPHen
dc.titleCharacterization of Groups E6(3) and 2E6(3) by Gruenberg Kegel Graphen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.scopus85123794632-
local.contributor.employeeKhramova, A.P., Sobolev Institute of Mathematics, 4 Acad Koptyug ave, Novosibirsk, 630090, Russian Federation; Maslova, N.V., Natalia Vladimirovna Maslova Krasovskii Institute of Mathematics and Mechanics UB RAS, 16, S. Kovalevskaja str, Yekaterinburg, 620108, Russian Federation, Ural Federal University, 19, Mira str., Yekaterinburg, 620002, Russian Federation, Ural Mathematical Center, 19, Mira str., Yekaterinburg, 620002, Russian Federation; Panshin, V.V., Sobolev Institute of Mathematics, 4 Acad Koptyug ave, Novosibirsk, 630090, Russian Federation, Natalia Vladimirovna Maslova Krasovskii Institute of Mathematics and Mechanics UB RAS, 16, S. Kovalevskaja str, Yekaterinburg, 620108, Russian Federation; Staroletov, A.M., Sobolev Institute of Mathematics, 4 Acad Koptyug ave, Novosibirsk, 630090, Russian Federation, Natalia Vladimirovna Maslova Krasovskii Institute of Mathematics and Mechanics UB RAS, 16, S. Kovalevskaja str, Yekaterinburg, 620108, Russian Federationen
local.description.firstpage1651-
local.description.lastpage1656-
local.issue2-
local.volume18-
local.contributor.departmentSobolev Institute of Mathematics, 4 Acad Koptyug ave, Novosibirsk, 630090, Russian Federation; Natalia Vladimirovna Maslova Krasovskii Institute of Mathematics and Mechanics UB RAS, 16, S. Kovalevskaja str, Yekaterinburg, 620108, Russian Federation; Ural Federal University, 19, Mira str., Yekaterinburg, 620002, Russian Federation; Ural Mathematical Center, 19, Mira str., Yekaterinburg, 620002, Russian Federationen
local.identifier.pure29226561-
local.identifier.eid2-s2.0-85123794632-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85123794632.pdf369,19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.