Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111548
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Bogdanov, M. | en |
dc.contributor.author | Baigildin, S. | en |
dc.contributor.author | Fabarisova, A. | en |
dc.contributor.author | Ushenin, K. | en |
dc.contributor.author | Solovyova, O. | en |
dc.date.accessioned | 2022-05-12T08:19:02Z | - |
dc.date.available | 2022-05-12T08:19:02Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Effects of Lead Position, Cardiac Rhythm Variation and Drug-induced QT Prolongation on Performance of Machine Learning Methods for ECG Processing / M. Bogdanov, S. Baigildin, A. Fabarisova et al. // Proceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020. — 2020. — Vol. — P. 40-43. — 9117753. | en |
dc.identifier.isbn | 9781728131658 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111548 | - |
dc.description.abstract | Machine learning shows great performance in various problems of electrocardiography (ECG) signal analysis. However, collecting a dataset for biomedical engineering is a very difficult task. Any dataset for ECG processing contains from 100 to 10,000 times fewer cases than datasets for image or text analysis. This issue is especially important because of physiological phenomena that can significantly change the morphology of heartbeats in ECG signals. In this preliminary study, we analyze the effects of lead choice from the standard ECG recordings, variation of ECG during 24-hours, and the effects of QT-prolongation agents on the performance of machine learning methods for ECG processing. We choose the problem of subject identification for analysis, because this problem may be solved for almost any available dataset of ECG data. In a discussion, we compare our findings with observations from other works that use machine learning for ECG processing with different problem statements. Our results show the importance of training dataset enrichment with ECG signals acquired in specific physiological conditions for obtaining good performance of ECG processing for real applications. © 2020 IEEE. | en |
dc.description.sponsorship | The reported study was supported by RFBR research project No. 19-37-50079 and supported by the IIF UrB RAS theme №AAAA-A18-118020590031-8, RF Government Act #211 of March 16, 2013, the Program of the Presidium RAS. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en1 |
dc.publisher | IEEE | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Proc. - Ural Symp. Biomed. Eng., Radioelectron. Inf. Technol., USBEREIT | 2 |
dc.source | Proceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020 | en |
dc.subject | ELECTROCARDIOGRAPHY | en |
dc.subject | HEART RHYTHM VARIATION | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | MORPHOLOGY ANALYSIS | en |
dc.subject | QT-PROLONGATION | en |
dc.subject | SUBJECT IDENTIFICATION | en |
dc.subject | BIOMEDICAL ENGINEERING | en |
dc.subject | BIOPHYSICS | en |
dc.subject | MACHINE LEARNING | en |
dc.subject | PHYSIOLOGY | en |
dc.subject | CARDIAC RHYTHMS | en |
dc.subject | MACHINE LEARNING METHODS | en |
dc.subject | PHYSIOLOGICAL CONDITION | en |
dc.subject | PROBLEM STATEMENT | en |
dc.subject | QT PROLONGATION | en |
dc.subject | REAL APPLICATIONS | en |
dc.subject | SUBJECT IDENTIFICATION | en |
dc.subject | TRAINING DATASET | en |
dc.title | Effects of Lead Position, Cardiac Rhythm Variation and Drug-induced QT Prolongation on Performance of Machine Learning Methods for ECG Processing | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.conference.name | 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020 | en |
dc.conference.date | 14 May 2020 through 15 May 2020 | - |
dc.identifier.doi | 10.1109/USBEREIT48449.2020.9117753 | - |
dc.identifier.scopus | 85089701447 | - |
local.contributor.employee | Bogdanov, M., Ufa State Aviation Technical University, Dep. of Computational Mathematics and Cybernetics, Ufa, Russian Federation; Baigildin, S., Bashkir State Pedagogical University, Faculty of Physics and Mathematics, Ufa, Russian Federation; Fabarisova, A., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Ushenin, K., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Solovyova, O., Institute of Immunology and Physiology UrB Ras, Laboratory of Mathematical Physiology, Ekaterinburg, Russian Federation | en |
local.description.firstpage | 40 | - |
local.description.lastpage | 43 | - |
local.contributor.department | Ufa State Aviation Technical University, Dep. of Computational Mathematics and Cybernetics, Ufa, Russian Federation; Bashkir State Pedagogical University, Faculty of Physics and Mathematics, Ufa, Russian Federation; Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Institute of Immunology and Physiology UrB Ras, Laboratory of Mathematical Physiology, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 13661650 | - |
local.description.order | 9117753 | - |
local.identifier.eid | 2-s2.0-85089701447 | - |
local.fund.rffi | 19-37-50079 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85089701447.pdf | 363,19 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.