Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111548
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBogdanov, M.en
dc.contributor.authorBaigildin, S.en
dc.contributor.authorFabarisova, A.en
dc.contributor.authorUshenin, K.en
dc.contributor.authorSolovyova, O.en
dc.date.accessioned2022-05-12T08:19:02Z-
dc.date.available2022-05-12T08:19:02Z-
dc.date.issued2020-
dc.identifier.citationEffects of Lead Position, Cardiac Rhythm Variation and Drug-induced QT Prolongation on Performance of Machine Learning Methods for ECG Processing / M. Bogdanov, S. Baigildin, A. Fabarisova et al. // Proceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020. — 2020. — Vol. — P. 40-43. — 9117753.en
dc.identifier.isbn9781728131658-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111548-
dc.description.abstractMachine learning shows great performance in various problems of electrocardiography (ECG) signal analysis. However, collecting a dataset for biomedical engineering is a very difficult task. Any dataset for ECG processing contains from 100 to 10,000 times fewer cases than datasets for image or text analysis. This issue is especially important because of physiological phenomena that can significantly change the morphology of heartbeats in ECG signals. In this preliminary study, we analyze the effects of lead choice from the standard ECG recordings, variation of ECG during 24-hours, and the effects of QT-prolongation agents on the performance of machine learning methods for ECG processing. We choose the problem of subject identification for analysis, because this problem may be solved for almost any available dataset of ECG data. In a discussion, we compare our findings with observations from other works that use machine learning for ECG processing with different problem statements. Our results show the importance of training dataset enrichment with ECG signals acquired in specific physiological conditions for obtaining good performance of ECG processing for real applications. © 2020 IEEE.en
dc.description.sponsorshipThe reported study was supported by RFBR research project No. 19-37-50079 and supported by the IIF UrB RAS theme №AAAA-A18-118020590031-8, RF Government Act #211 of March 16, 2013, the Program of the Presidium RAS.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en1
dc.publisherIEEEen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceProc. - Ural Symp. Biomed. Eng., Radioelectron. Inf. Technol., USBEREIT2
dc.sourceProceedings - 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020en
dc.subjectELECTROCARDIOGRAPHYen
dc.subjectHEART RHYTHM VARIATIONen
dc.subjectMACHINE LEARNINGen
dc.subjectMORPHOLOGY ANALYSISen
dc.subjectQT-PROLONGATIONen
dc.subjectSUBJECT IDENTIFICATIONen
dc.subjectBIOMEDICAL ENGINEERINGen
dc.subjectBIOPHYSICSen
dc.subjectMACHINE LEARNINGen
dc.subjectPHYSIOLOGYen
dc.subjectCARDIAC RHYTHMSen
dc.subjectMACHINE LEARNING METHODSen
dc.subjectPHYSIOLOGICAL CONDITIONen
dc.subjectPROBLEM STATEMENTen
dc.subjectQT PROLONGATIONen
dc.subjectREAL APPLICATIONSen
dc.subjectSUBJECT IDENTIFICATIONen
dc.subjectTRAINING DATASETen
dc.titleEffects of Lead Position, Cardiac Rhythm Variation and Drug-induced QT Prolongation on Performance of Machine Learning Methods for ECG Processingen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.conference.name2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2020en
dc.conference.date14 May 2020 through 15 May 2020-
dc.identifier.doi10.1109/USBEREIT48449.2020.9117753-
dc.identifier.scopus85089701447-
local.contributor.employeeBogdanov, M., Ufa State Aviation Technical University, Dep. of Computational Mathematics and Cybernetics, Ufa, Russian Federation; Baigildin, S., Bashkir State Pedagogical University, Faculty of Physics and Mathematics, Ufa, Russian Federation; Fabarisova, A., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Ushenin, K., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Solovyova, O., Institute of Immunology and Physiology UrB Ras, Laboratory of Mathematical Physiology, Ekaterinburg, Russian Federationen
local.description.firstpage40-
local.description.lastpage43-
local.contributor.departmentUfa State Aviation Technical University, Dep. of Computational Mathematics and Cybernetics, Ufa, Russian Federation; Bashkir State Pedagogical University, Faculty of Physics and Mathematics, Ufa, Russian Federation; Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation; Institute of Immunology and Physiology UrB Ras, Laboratory of Mathematical Physiology, Ekaterinburg, Russian Federationen
local.identifier.pure13661650-
local.description.order9117753-
local.identifier.eid2-s2.0-85089701447-
local.fund.rffi19-37-50079-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85089701447.pdf363,19 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.