Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111534
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMikushina, N. A.en
dc.contributor.authorMoskvin, A. S.en
dc.date.accessioned2022-05-12T08:18:53Z-
dc.date.available2022-05-12T08:18:53Z-
dc.date.issued2002-
dc.identifier.citationMikushina N. A. Dipole and Quadrupole Skyrmions in S = 1 (pseudo)spin Systems / N. A. Mikushina, A. S. Moskvin // Physics Letters, Section A: General, Atomic and Solid State Physics. — 2002. — Vol. 302. — Iss. 1. — P. 8-16.en
dc.identifier.issn0375-9601-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111534-
dc.description.abstractIn terms of spin coherent states we have investigated topological defects in 2D S = 1 (pseudo)spin quantum system with the bilinear and biquadratic isotropic exchange in the continuum limit. The proper Hamiltonian of the model can be written as bilinear on the generators of SU(3) group (Gell-Mann matrices). Knowledge of such group structure enables us to obtain some new exact analytical results. The analysis of the proper classical model and its topology allows to get different skyrmionic solutions with finite energy and the spatial distribution of spin-dipole and/or spin-quadrupole moments termed as dipole, quadrupole, and dipole-quadrupole skyrmions, respectively. Among the latter we would like note the in-plane vortices with the in-plane distribution of spin moment, varying spin length, and the non-trivial distribution of spin-quadrupole moments. © 2002 Elsevier Science B.V. All rights reserved.en
dc.description.sponsorshipWe thank A.B. Borisov and R.A. Istomin for valuable discussions. The research described in this Letter was made possible in part by Award No. REC-005 of the US Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). The authors acknowledge a partial support from the Russian Ministry of Education, grant E00-3.4-280, and Russian Foundation for Basic Researches, grant 01-02-96404. One of us (A.M.) would like to thank for hospitality Institut für Festkörper- und Werkstofforschung Dresden.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevieren1
dc.publisherElsevier BVen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys Lett Sect A Gen At Solid State Phys2
dc.sourcePhysics Letters, Section A: General, Atomic and Solid State Physicsen
dc.subject2D CLASSICAL AND QUANTUM SPIN SYSTEMSen
dc.subjectSKYRMIONSen
dc.subjectTOPOLOGICAL DEFECTSen
dc.subjectDEFECTSen
dc.subjectQUANTUM OPTICSen
dc.subjectSPIN DYNAMICSen
dc.subjectANALYTICAL RESULTSen
dc.subjectDIPOLE-QUADRUPOLEen
dc.subjectISOTROPIC EXCHANGEen
dc.subjectQUADRUPOLE MOMENTSen
dc.subjectQUANTUM SPIN SYSTEMSen
dc.subjectSKYRMIONSen
dc.subjectSPIN-COHERENT STATEen
dc.subjectTOPOLOGICAL DEFECTen
dc.subjectTOPOLOGYen
dc.subjectACCELERATIONen
dc.subjectANALYTIC METHODen
dc.subjectARTICLEen
dc.subjectCALCULATIONen
dc.subjectDIPOLEen
dc.subjectMODELen
dc.subjectQUANTUM MECHANICSen
dc.titleDipole and Quadrupole Skyrmions in S = 1 (pseudo)spin Systemsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.scopus0037047975-
local.contributor.employeeMikushina, N.A., Ural State University, 620083 Ekaterinburg, Russian Federation; Moskvin, A.S., Ural State University, 620083 Ekaterinburg, Russian Federationen
local.description.firstpage8-
local.description.lastpage16-
local.issue1-
local.volume302-
dc.identifier.wos000178260600002-
local.contributor.departmentUral State University, 620083 Ekaterinburg, Russian Federationen
local.identifier.pure8360857-
local.identifier.eid2-s2.0-0037047975-
local.fund.rffi01-02-96404-
local.identifier.wosWOS:000178260600002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-0037047975.pdf182,73 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.