Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111520
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorFedotov, S.en
dc.contributor.authorAl-Shamsi, H.en
dc.contributor.authorIvanov, A.en
dc.contributor.authorZubarev, A.en
dc.date.accessioned2022-05-12T08:18:42Z-
dc.date.available2022-05-12T08:18:42Z-
dc.date.issued2010-
dc.identifier.citationAnomalous Transport and Nonlinear Reactions in Spiny Dendrites / S. Fedotov, H. Al-Shamsi, A. Ivanov et al. // Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. — 2010. — Vol. 82. — Iss. 4. — 041103.en
dc.identifier.issn1539-3755-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111520-
dc.description.abstractWe present a mesoscopic description of the anomalous transport and reactions of particles in spiny dendrites. As a starting point we use two-state Markovian model with the transition probabilities depending on residence time variable. The main assumption is that the longer a particle survives inside spine, the smaller becomes the transition probability from spine to dendrite. We extend a linear model presented in Fedotov [Phys. Rev. Lett. 101, 218102 (2008)10.1103/PhysRevLett.101.218102] and derive the nonlinear Master equations for the average densities of particles inside spines and parent dendrite by eliminating residence time variable. We show that the flux of particles between spines and parent dendrite is not local in time and space. In particular the average flux of particles from a population of spines through spines necks into parent dendrite depends on chemical reactions in spines. This memory effect means that one cannot separate the exchange flux of particles and the chemical reactions inside spines. This phenomenon does not exist in the Markovian case. The flux of particles from dendrite to spines is found to depend on the transport process inside dendrite. We show that if the particles inside a dendrite have constant velocity, the mean particle's position x (t) increases as tμ with μ<1 (anomalous advection). We derive a fractional advection-diffusion equation for the total density of particles. © 2010 The American Physical Society.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Society (APS)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. E Stat. Nonlinear Soft Matter Phys.2
dc.sourcePhysical Review E - Statistical, Nonlinear, and Soft Matter Physicsen
dc.subjectADVECTION DIFFUSION EQUATIONen
dc.subjectANOMALOUS TRANSPORTen
dc.subjectAVERAGE FLUXen
dc.subjectCONSTANT VELOCITIESen
dc.subjectEXCHANGE FLUXESen
dc.subjectLINEAR MODELen
dc.subjectMARKOVIANen
dc.subjectMARKOVIAN MODELen
dc.subjectMASTER EQUATIONSen
dc.subjectMEMORY EFFECTSen
dc.subjectMESOSCOPICSen
dc.subjectNONLINEAR REACTIONen
dc.subjectRESIDENCE TIMEen
dc.subjectTIME AND SPACEen
dc.subjectTOTAL DENSITYen
dc.subjectTRANSITION PROBABILITIESen
dc.subjectTRANSPORT PROCESSen
dc.subjectTWO-STATEen
dc.subjectADVECTIONen
dc.subjectCHEMICAL REACTIONSen
dc.subjectMARKOV PROCESSESen
dc.subjectNEURONSen
dc.subjectNONLINEAR EQUATIONSen
dc.subjectPROBABILITYen
dc.subjectDENDRITES (METALLOGRAPHY)en
dc.titleAnomalous Transport and Nonlinear Reactions in Spiny Dendritesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.scopus78651340572-
local.contributor.employeeFedotov, S., School of Mathematics, University of Manchester, Manchester M60 1QD, United Kingdom; Al-Shamsi, H., School of Mathematics, University of Manchester, Manchester M60 1QD, United Kingdom; Ivanov, A., Department of Mathematical Physics, Ural State University, Ekaterinburg, Russian Federation; Zubarev, A., Department of Mathematical Physics, Ural State University, Ekaterinburg, Russian Federationen
local.issue4-
local.volume82-
dc.identifier.wos000282570900001-
local.contributor.departmentSchool of Mathematics, University of Manchester, Manchester M60 1QD, United Kingdom; Department of Mathematical Physics, Ural State University, Ekaterinburg, Russian Federationen
local.identifier.pure7380913-
local.description.order041103-
local.identifier.eid2-s2.0-78651340572-
local.identifier.wosWOS:000282570900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-78651340572.pdf212,94 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.