Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/111520
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Fedotov, S. | en |
dc.contributor.author | Al-Shamsi, H. | en |
dc.contributor.author | Ivanov, A. | en |
dc.contributor.author | Zubarev, A. | en |
dc.date.accessioned | 2022-05-12T08:18:42Z | - |
dc.date.available | 2022-05-12T08:18:42Z | - |
dc.date.issued | 2010 | - |
dc.identifier.citation | Anomalous Transport and Nonlinear Reactions in Spiny Dendrites / S. Fedotov, H. Al-Shamsi, A. Ivanov et al. // Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. — 2010. — Vol. 82. — Iss. 4. — 041103. | en |
dc.identifier.issn | 1539-3755 | - |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/111520 | - |
dc.description.abstract | We present a mesoscopic description of the anomalous transport and reactions of particles in spiny dendrites. As a starting point we use two-state Markovian model with the transition probabilities depending on residence time variable. The main assumption is that the longer a particle survives inside spine, the smaller becomes the transition probability from spine to dendrite. We extend a linear model presented in Fedotov [Phys. Rev. Lett. 101, 218102 (2008)10.1103/PhysRevLett.101.218102] and derive the nonlinear Master equations for the average densities of particles inside spines and parent dendrite by eliminating residence time variable. We show that the flux of particles between spines and parent dendrite is not local in time and space. In particular the average flux of particles from a population of spines through spines necks into parent dendrite depends on chemical reactions in spines. This memory effect means that one cannot separate the exchange flux of particles and the chemical reactions inside spines. This phenomenon does not exist in the Markovian case. The flux of particles from dendrite to spines is found to depend on the transport process inside dendrite. We show that if the particles inside a dendrite have constant velocity, the mean particle's position x (t) increases as tμ with μ<1 (anomalous advection). We derive a fractional advection-diffusion equation for the total density of particles. © 2010 The American Physical Society. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society (APS) | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Phys. Rev. E Stat. Nonlinear Soft Matter Phys. | 2 |
dc.source | Physical Review E - Statistical, Nonlinear, and Soft Matter Physics | en |
dc.subject | ADVECTION DIFFUSION EQUATION | en |
dc.subject | ANOMALOUS TRANSPORT | en |
dc.subject | AVERAGE FLUX | en |
dc.subject | CONSTANT VELOCITIES | en |
dc.subject | EXCHANGE FLUXES | en |
dc.subject | LINEAR MODEL | en |
dc.subject | MARKOVIAN | en |
dc.subject | MARKOVIAN MODEL | en |
dc.subject | MASTER EQUATIONS | en |
dc.subject | MEMORY EFFECTS | en |
dc.subject | MESOSCOPICS | en |
dc.subject | NONLINEAR REACTION | en |
dc.subject | RESIDENCE TIME | en |
dc.subject | TIME AND SPACE | en |
dc.subject | TOTAL DENSITY | en |
dc.subject | TRANSITION PROBABILITIES | en |
dc.subject | TRANSPORT PROCESS | en |
dc.subject | TWO-STATE | en |
dc.subject | ADVECTION | en |
dc.subject | CHEMICAL REACTIONS | en |
dc.subject | MARKOV PROCESSES | en |
dc.subject | NEURONS | en |
dc.subject | NONLINEAR EQUATIONS | en |
dc.subject | PROBABILITY | en |
dc.subject | DENDRITES (METALLOGRAPHY) | en |
dc.title | Anomalous Transport and Nonlinear Reactions in Spiny Dendrites | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/submittedVersion | en |
dc.identifier.scopus | 78651340572 | - |
local.contributor.employee | Fedotov, S., School of Mathematics, University of Manchester, Manchester M60 1QD, United Kingdom; Al-Shamsi, H., School of Mathematics, University of Manchester, Manchester M60 1QD, United Kingdom; Ivanov, A., Department of Mathematical Physics, Ural State University, Ekaterinburg, Russian Federation; Zubarev, A., Department of Mathematical Physics, Ural State University, Ekaterinburg, Russian Federation | en |
local.issue | 4 | - |
local.volume | 82 | - |
dc.identifier.wos | 000282570900001 | - |
local.contributor.department | School of Mathematics, University of Manchester, Manchester M60 1QD, United Kingdom; Department of Mathematical Physics, Ural State University, Ekaterinburg, Russian Federation | en |
local.identifier.pure | 7380913 | - |
local.description.order | 041103 | - |
local.identifier.eid | 2-s2.0-78651340572 | - |
local.identifier.wos | WOS:000282570900001 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-78651340572.pdf | 212,94 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.