Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111436
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBadrtdinov, D. I.en
dc.contributor.authorHampel, A.en
dc.contributor.authorDreyer, C. E.en
dc.date.accessioned2022-05-12T08:17:55Z-
dc.date.available2022-05-12T08:17:55Z-
dc.date.issued2021-
dc.identifier.citationBadrtdinov D. I. Interplay between Breathing-mode Distortions and Magnetic Order in Rare-earth Nickelates from ab Initio Magnetic Models / D. I. Badrtdinov, A. Hampel, C. E. Dreyer // Physical Review B. — 2021. — Vol. 104. — Iss. 5. — 054403.en
dc.identifier.issn2469-9950-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111436-
dc.description.abstractWe use density-functional theory calculations to explore the magnetic properties of perovskite rare-earth nickelates RNiO3 by constructing microscopic magnetic models containing all relevant exchange interactions via Wannierization and Green's function techniques. These models elucidate the mechanism behind the formation of antiferromagnetic order with the experimentally observed propagation vector, and explain the reason previous DFT plus Hubbard U calculations favored ferromagnetic order. We perform calculations of magnetic moments and exchange-coupling parameters for different amplitudes of the R1+ breathing-mode distortion, which results in expanded and compressed NiO6 octahedra. Our analysis shows that the strong competition between nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic couplings determine the magnetic ordering. The inclusion of spin-orbit coupling demonstrates that the magnetic anisotropy is very small, while the magnetic moments of the short bond nickel atoms tend to zero similar to the collinear case. Finally, we show that nickelates with larger rare-earth ions display overall stronger exchange couplings, resulting in a more stable antiferromagnetic phase. Our results provide a clear picture of the trends of the magnetic order across the nickelate series and give insights into the coupling between magnetic order and structural distortions. © 2021 American Physical Society.en
dc.description.sponsorshipD.I.B. is grateful to S. A. Nikolaev (Tokyo Institute of Technology) for helpful discussions. The calculations have been performed using the facilities of the Flatiron Institute. The Flatiron Institute is a division of the Simons Foundation. C.E.D. acknowledge support from the National Science Foundation under Grant No. DMR-1918455.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen1
dc.publisherAmerican Physical Society (APS)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. B2
dc.sourcePhysical Review Ben
dc.subjectANTIFERROMAGNETISMen
dc.subjectCALCULATIONSen
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.subjectEXCHANGE COUPLINGen
dc.subjectFERROMAGNETIC MATERIALSen
dc.subjectFERROMAGNETISMen
dc.subjectMAGNETIC ANISOTROPYen
dc.subjectMAGNETIC MOMENTSen
dc.subjectMETAL IONSen
dc.subjectNICKEL COMPOUNDSen
dc.subjectORBITSen
dc.subjectPEROVSKITEen
dc.subjectRARE EARTHSen
dc.subjectANTIFERROMAGNETIC COUPLINGen
dc.subjectANTIFERROMAGNETIC ORDERINGSen
dc.subjectANTIFERROMAGNETIC PHASEen
dc.subjectCOUPLING PARAMETERSen
dc.subjectFERROMAGNETIC ORDERINGSen
dc.subjectGREEN'S FUNCTION TECHNIQUEen
dc.subjectPROPAGATION VECTORen
dc.subjectSTRUCTURAL DISTORTIONSen
dc.subjectSPIN ORBIT COUPLINGen
dc.titleInterplay between Breathing-mode Distortions and Magnetic Order in Rare-earth Nickelates from ab Initio Magnetic Modelsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.rsi46958113-
dc.identifier.doi10.1103/PhysRevB.104.054403-
dc.identifier.scopus85112033617-
local.contributor.employeeBadrtdinov, D.I., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation, Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, United States; Hampel, A., Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, United States; Dreyer, C.E., Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, United States, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United Statesen
local.issue5-
local.volume104-
dc.identifier.wos000681114200002-
local.contributor.departmentTheoretical Physics and Applied Mathematics Department, Ural Federal University, Yekaterinburg, 620002, Russian Federation; Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, United States; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, United Statesen
local.identifier.pure22983404-
local.description.order054403-
local.identifier.eid2-s2.0-85112033617-
local.fund.nsfDMR-1918455-
local.identifier.wosWOS:000681114200002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85112033617.pdf9,21 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.