Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111432
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBostrem, I. G.en
dc.contributor.authorEkomasov, E. G.en
dc.contributor.authorKishine, J.en
dc.contributor.authorOvchinnikov, A. S.en
dc.contributor.authorSinitsyn, V. E.en
dc.date.accessioned2022-05-12T08:17:51Z-
dc.date.available2022-05-12T08:17:51Z-
dc.date.issued2021-
dc.identifier.citationDark Discrete Breather Modes in a Monoaxial Chiral Helimagnet with Easy-plane Anisotropy / I. G. Bostrem, E. G. Ekomasov, J. Kishine et al. // Physical Review B. — 2021. — Vol. 104. — Iss. 21. — 214420.en
dc.identifier.issn2469-9950-
dc.identifier.otherAll Open Access, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111432-
dc.description.abstractNonlinearity and discreteness are two pivotal factors for an emergence of discrete breather excitations in various media. We argue that these requirements are met in the forced ferromagnetic phase of the monoaxial chiral helimagnet CrNb3S6 due to the specific domain structure of the compound. The stationary, time-periodic breather modes appear as the discrete breather lattice solutions whose period mismatches with a system size. Thanks to easy-plane single-ion anisotropy intrinsic to CrNb3S6, these modes are of the dark type with frequencies lying within the linear spin-wave band, close to its bottom edge. They represent cnoidal states of magnetization, similar to the well-known soliton lattice ground state, with differing but limited number of embedded 2π kinks. The linear stability of these dark breather modes is verified by means of Floquet analysis. Their energy, which is controlled by two parameters, namely, the breather lattice period and amplitude, falls off linearly with a growth of the kink number. These results may pave a path to design spintronic resonators on the base of chiral helimagnets. © 2021 American Physical Society.en
dc.description.sponsorshipThis work was supported by the Act of the Government of the Russian Federation (Contract No. 02.A03.21.0006). I.G.B., E.G.E., and V.E.S. acknowledge financial support by the Russian Foundation for Basic Research (RFBR), Grant No. 20-02-00213. A.S.O. thanks the Russian Foundation for Basic Research (RFBR), Grant No. 20-52-50005, and the Ministry of Science and Higher Education of the Russian Federation, Project No. FEUZ-2020-0054. J.K. acknowledges financial support by JSPS KAKENHI Grant No. 17H02923.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen1
dc.publisherAmerican Physical Society (APS)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. B2
dc.sourcePhysical Review Ben
dc.subjectANISOTROPYen
dc.subjectGROUND STATEen
dc.subjectNIOBIUM COMPOUNDSen
dc.subjectSPIN WAVESen
dc.subjectSULFUR COMPOUNDSen
dc.subjectDISCRETE BREATHERen
dc.subjectDOMAIN STRUCTUREen
dc.subjectEASY PLANEen
dc.subjectEASY-PLANE ANISOTROPYen
dc.subjectFERROMAGNETIC PHASISen
dc.subjectLINEAR STABILITYen
dc.subjectSINGLE ION ANISOTROPYen
dc.subjectSOLITON LATTICEen
dc.subjectSYSTEM SIZEen
dc.subjectWAVEBANDSen
dc.subjectCHROMIUM COMPOUNDSen
dc.titleDark Discrete Breather Modes in a Monoaxial Chiral Helimagnet with Easy-plane Anisotropyen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/submittedVersionen
dc.identifier.rsi47547626-
dc.identifier.doi10.1103/PhysRevB.104.214420-
dc.identifier.scopus85122023731-
local.contributor.employeeBostrem, I.G., Institute of Natural Science and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federation; Ekomasov, E.G., Bashkir State University, Institute of Physics and Technology, Ufa, 450076, Russian Federation, Tyumen State University, Institute of Physics and Technology, Tyumen, 625003, Russian Federation; Kishine, J., Division of Natural and Environmental Sciences, Open University of Japan, Chiba, 261-8586, Japan, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan; Ovchinnikov, A.S., Institute of Natural Science and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federation, Institute of Metal Physics, Ural Division, Russian Academy of Sciences, Ekaterinburg, 620219, Russian Federation; Sinitsyn, V.E., Institute of Natural Science and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federationen
local.issue21-
local.volume104-
dc.identifier.wos000753810400006-
local.contributor.departmentInstitute of Natural Science and Mathematics, Ural Federal University, Ekaterinburg, 620002, Russian Federation; Bashkir State University, Institute of Physics and Technology, Ufa, 450076, Russian Federation; Tyumen State University, Institute of Physics and Technology, Tyumen, 625003, Russian Federation; Division of Natural and Environmental Sciences, Open University of Japan, Chiba, 261-8586, Japan; Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan; Institute of Metal Physics, Ural Division, Russian Academy of Sciences, Ekaterinburg, 620219, Russian Federationen
local.identifier.pure29207430-
local.description.order214420-
local.identifier.eid2-s2.0-85122023731-
local.fund.rffi20-02-00213-
local.fund.rffi20-52-50005-
local.identifier.wosWOS:000753810400006-
local.fund.feuzFEUZ-2020-0054-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85122023731.pdf2,62 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.